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Recall the main steps of the moment-SOS aka Lasserre hierarchy.

Given a nonlinear nonconvex problem:

1. Reformulate it as a linear problem (at the price of enlarging

or changing the space of solutions);

2. Solve approximately the linear problem with a hierarchy of

tractable convex relaxations (of increasing size);

3. Ensure convergence: either the original problem is solved

at a finite relaxation size, or its solution is approximated with

increasing quality.

At each step, conic duality is an essential ingredient.



POC

A polynomial optimal control (POC) problem is a time-varying

extension of a polynomial optimization problem

v∗(t0, x0) := infu
∫ T

t0
l(xt, ut)dt+ lT (xT )

s.t. ẋt = f(xt, ut), xt0 = x0
xt ∈ X, ut ∈ U, ∀t ∈ [t0, T ]
xT ∈ XT

All the given data f , l, lT are polynomial

and the given sets X, XT , U are semi-algebraic

Terminal time T can be either given or free

The function v∗ of the initial data t0, x0 is the value function



Why is the value function important ?



From value function to optimal control

From the value function v∗ we can derive an optimal control

u∗t ∈ arg min
u
{l(xt, u) + grad v∗(t, xt) · f(xt, u)}

by solving an optimization problem

Then we can verify optimality

l(xt, u
∗
t ) +

∂v∗(t, xt)

∂t
+ grad v∗(t, xt) · f(xt, u

∗
t ) = 0



HJB PDE

The value function solves the Hamilton-Jacobi-Bellman (HJB)
equation, a nonlinear first-order partial differential equation (PDE)

∂v(t, x)

∂t
+ h(t,grad v(t, x)) = 0

v(T, .) = lT

with Hamiltonian conjugate to the Lagrangian

h(t, p) := inf
u
{l(x, u) + p · f(x, u)}

If u 7→ f(x, u) is affine and u 7→ l(x, u) is quadratic convex
the HJB PDE is a classical Riccati equation

In general this PDE does not have a regular solution, and a
notion of weak solution (viscosity solution) must be defined



What is the geometry of the value function ?



Eikonal equation of geometric optics

Minimum time to reach the boundary of a given set X ⊂ Rn

with velocity bounded in U := {u ∈ Rm : ‖u‖2 ≤ 1}

v∗(x0) := infu
∫ T

0
dt

s.t. ẋt = ut, x0 given
xt ∈ X, ut ∈ U, ∀t ∈ [0, T ]
xT ∈ XT := ∂X

Here, the value function does not depend on time

Let n = m = 1 and X = U = [−1,1], what is x 7→ v∗(x) ?





Eikonal HJB

Lagrangian l(x, u) = 1, vector field f(x, u) = u

Hamiltonian h(x, p) := inf‖u‖2≤1{l(x, u) + p · f(x, u)} = 1− ‖p‖22

1− ‖grad v‖22 = 0 onX

v = 0 on ∂X

Amongst the many functions vanishing on ∂X and with unit

gradient on X there is a unique solution in the viscosity sense

It is nondifferentiable at the origin



Cut locus = set of nondifferentiability points

of eikonal function of a polytope X



The value function can be complicated



Wheeled robot value function

Minimum time problem for Dubins

or Reeds-Shepp car of nonholonomic

robotics

ẋt = ut cos θt
ẏt = ut sin θt
θ̇t = vt

equivalent to Brockett’s integrator

ẋt = ut
ẏt = vt
żt = ytut − xtvt





The value function is not smooth



.. just lower semicontinuous

Minimum time for X = [−1,1], U = [0,1], XT = {0,1}



In general there is no optimal control !



No optimal control

Bolza problem

v∗ = infu
∫ 1

0
(x2
t + (u2

t − 1)2)dt

s.t. ẋt = ut, x0 = 0
xt ∈ X := [−1,1], ut ∈ U := [−1,1] ∀t ∈ [0,1]

The cost is nonconvex in the control

Let us construct a minimizing sequence...





The infimum v∗ = 0 is not attained in the space of measurable

functions of time

t 7→ ut ∈ U

so let us enlarge the space of allowable controls

We proceed as previously for POP and MPI set approximation

Instead of classical controls let us consider relaxed controls

t 7→ ωt(du) = ω(du|t) ∈P(U)

as time-dependent probability measures on U



The controlled ordinary differential equation (ODE)

ẋt = f(xt, ut), ut ∈ U

becomes a relaxed controlled ODE

ẋt =
∫
U
f(xt, u)ωt(du)

Classical controls correspond to ωt(du) = δut(du)

Relaxed controls capture limit behavior such as e.g. oscillations

lim
r→∞

∫ T

t0
v(urt)dt =

∫ T

t0

∫
U
v(u)ωt(du)dt, ∀v ∈ C(U)

Exercise 3.1: What is the limit ωt(du) if ur(t) = sin(2πrt) ?



The classical Bolza problem

v∗ = infu
∫ 1

0
(x2
t + (u2

t − 1)2)dt

s.t. ẋt = ut, x0 = 0
xt ∈ [−1,1], ut ∈ [−1,1] ∀t ∈ [0,1]

becomes the relaxed Bolza problem

v∗R = infωt

∫ 1

0

∫
U

(x2
t + (u2 − 1)2) ωt(du)dt

s.t. ẋt =
∫
U
u ωt(du), x0 = 0

xt ∈ [−1,1], ωt ∈P([−1,1]) ∀t ∈ [0,1]

Exercise 3.2: Prove that there is no relaxation gap: v∗ = v∗R
and that the relaxed infimum is attained at ω∗t = 1

2(δ−1+δ+1).



Let’s relax



The classical POC problem

v∗(t0, x0) := infu
∫ T

t0
l(xt, ut)dt+ lT (xT )

s.t. ẋt = f(xt, ut), xt0 = x0
xt ∈ X, ut ∈ U, ∀t ∈ [t0, T ]
xT ∈ XT

becomes a relaxed POC problem

v∗R(t0, x0) := minωt

∫ T

t0

∫
U
l(xt, u)ωt(du)dt+ lT (xT )

s.t. ẋt =
∫
U
f(xt, u)ωt(du), xt0 = x0

xt ∈ X, ωt ∈P(U), ∀t ∈ [t0, T ]
xT ∈ XT

and under reasonable convexity assumptions, it can be shown

that there is no relaxation gap: v∗R = v∗



Not relaxed enough



The POC problem is still nonlinear in the state trajectory

For a given initial state x0 and a given relaxed control ωt,

let us introduce the occupation measure

dµ(t, x, u|x0) := dt ωt(du)δxt(dx|x0, u)

corresponding to the trajectory xt

Integration of an observable along time trajectory becomes∫ T

t0
v(xt)dt =

∫ T

t0

∫
X

∫
U
v(x)dµ(t, x, u|x0) = 〈v, µ〉, ∀v ∈ C(X)



Given v ∈ C1([t0, T ]×X), notice that

v(T, xT )− v(t0, x0) =
∫ T

t0
dv(t, xt)

=
∫ T

t0
v̇(t, xt)dt

=
∫ T

t0
L v(t, xt)dt

where L is an operator from C1([t0, T ]×X) to C([t0, T ]×X×U):

v 7→ L v :=
∂v

∂t
+ grad v · f



The relation

v(T, xT )− v(t0, x0) =
∫ T

t0
L v(t, xt)dt

can be written as follows∫
X
vµT −

∫
X
vµ0 =

∫ T

t0

∫
X

∫
U

L vµ

after defining µ0 := δt0(dt)δx0(dx) and µT := δT (dt)δxT (dx)

This is the Liouville equation

L ′µ+ µT = µ0

involving the adjoint operator

µ 7→ L ′µ :=
∂µ

∂t
+ div(fµ)



For a given initial state x0 and a given control ut,

we replace the nonlinear Cauchy problem

ẋt = f(xt, ut), xt0 = x0

with the linear Liouville problem

∂µ

∂t
+ div(fµ) + µT = δt0δx0

Lemma: There is a unique solution to the Liouville equation,

whose state conditional is concentrated on the solution to the

Cauchy problem: dµ(t, x, u|x0) = dt δut(du)δxt(dx|x0, u).

Also true when replacing the classical control ut with a relaxed

control ωt, in which case dµ(t, x, u|x0) = dt ωt(du)δxt(dx|x0, u)



Step 1 - Linear reformulation



The original POC problem

v∗(t0, x0) := infu
∫ T

t0
l(xt, ut)dt+ lT (xT )

s.t. ẋt = f(xt, ut), xt0 = x0
xt ∈ X, ut ∈ U, ∀t ∈ [t0, T ]
xT ∈ XT

becomes a linear problem (LP)

p∗(t0, x0) := minµ,µT

∫
lµ+

∫
lTµT

s.t. ∂µ
∂t + div(fµ) + µT = δt0δx0

on measures µ ∈ C([t0, T ]×X × U)′+, µT ∈ C({T} ×XT )′+

Lemma: p∗ = v∗



The primal measure LP

p∗(t0, x0) := minµ,µT

∫
lµ+

∫
lTµT

s.t. ∂µ
∂t + div(fµ) + µT = δt0δx0

µ ∈ C([t0, T ]×X × U)′+, µT ∈ C({T} ×XT )′+
has a dual LP

d∗(t0, x0) := supv v(t0, x0)
s.t. l + ∂v

∂t + grad v · f ∈ C([t0, T ]×X × U)+
lT − v(T, .) ∈ C({T} ×XT )+

on functions v ∈ C1([t0, T ]×X)

Exercise 3.3: Derive the dual and prove that there is no

duality gap: p∗ = d∗.



Step 2 - Convex hierarchy



To solve the primal LP

p∗(t0, x0) := minµ,µT

∫
lµ+

∫
lTµT

s.t. ∂µ
∂t + div(fµ) + µT = δt0δx0

µ ∈ C([t0, T ]×X × U)′+, µT ∈ C({T} ×XT )′+
and dual LP

d∗(t0, x0) := supv v(t0, x0)
s.t. l + ∂v

∂t + grad v · f ∈ C([t0, T ]×X × U)+
lT − v(T, .) ∈ C({T} ×XT )+

with X, XT bounded basic semialgebraic and l, lT , f polynomial
we can readily use the moment-SOS hierarchy

We replace C(.)+ with Q(.)r for increasing relaxation order r

and we get sequences p∗r and d∗r as well as pseudo-moments and
polynomials vr in R[x]r



Step 3 - Convergence



Dual LP

d∗(t0, x0) := supv v(t0, x0)
s.t. l + ∂v

∂t + grad v · f ∈ C([t0, T ]×X × U)+
lT − v(T, .) ∈ C({T} ×XT )+

Lemma (lower bound on the value function): it holds v∗ ≥ v
on [t0, T ]×X for every admissible v

Exercise 3.4: Prove this by combining the dual inequalities

evaluated on an admissible trajectory.

Lemma (maximizing sequence): there exists an admissible
sequence (vr)r∈N such that limr→∞ vr(t0, x0) = v∗(t0, x0).

This later lemma follows from strong LP duality. It means that
at the limit the graph of vr touches the graph v from below



Theorem (uniform convergence along trajectories): For any

admissible (vr)r∈N and any optimal trajectory (xt)t∈[t0,T ] it holds

0 ≤ v∗(t, xt)− vr(t, xt) ≤ v∗(t0, x0)− vr(t0, x0) −→
r→∞ 0.

In other words, the gap between the value function and its lower

bound decreases along optimal trajectories

The result holds for any optimal trajectory and hence for all of

them simultaneously



In the Liouville equation

∂µ

∂t
+ div(fµ) + µT = δt0δx0

instead of a Dirac right hand side we can use a general probability

measure ξ0 ∈P(X) supported on a set of initial conditions

∂µ

∂t
+ div(fµ) + µT = δt0ξ0 =: µ0

Equivalently, instead of using the occupation measure

dµ(t, x, u|x0) := dt ωt(du)δxt(dx|x0, u)

we use the averaged occupation measure

dµ(t, x, u) :=
∫
X
dµ(t, x, u|x0)dξ0(x0)



The value function also becomes averaged

v̄∗(µ0) :=
∫
X
v∗(t0, x0)ξ0(x0)

and matches the primal LP averaged value

p̄∗(µ0) := minµ,µT 〈l, µ〉+ 〈lT , µT 〉
s.t. ∂µ

∂t + div(fµ) + µT = µ0
µ ∈ C([t0, T ]×X × U)′+, µT ∈ C({T} ×XT )′+

and the dual LP averaged value

d̄∗(µ0) := supv 〈v, µ0〉
s.t. l + ∂v

∂t + grad v · f ∈ C([t0, T ]×X × U)+
lT − v(T, .) ∈ C({T} ×XT )+



For any solution (µ, µT ) of the primal LP, there are measures

ξt ∈ P(X), ωt,x ∈ P(U) such that dµ(t, x, u) = dt ξt(dx)ωt,x(du),

dµ0(t, x) = δt0(dx)ξt0(dx), dµT (t, x) = δT (dx)ξT (dx)

Let (xt)t∈[t0,T ] be the trajectory starting at xt0 = x0

The map Ft : x0 7→ xt is called the flow of the controlled ODE,

and ξt = Ft#ξ0 is the image measure of the initial distribution

Theorem (uniform convergence): For any maximizing dual

sequence (vr)r∈N and any t ∈ [t0, T ] it holds

0 ≤
∫
X

(v∗(t, x)−vr(t, x))ξt(dx) ≤
∫
X

(v∗(t0, x0)−vr(t0, x0))ξ0(dx) −→
r→∞ 0



First example: turnpike control



Turnpike control

v∗(t0, x0) :=

infu
∫ 2

t0
(xt + ut)dt

s.t. ẋt = 1 + xt − xtut, xt0 = x0
xt ∈ [−3,3], ut ∈ [0,3] 0

1

2

3

0.0 0.5 1.0 1.5 2.0
t

optimal trajectory xt starting at

(t0, x0) = (0,0)



Turnpike control

0

1

2

3

0.0 0.5 1.0 1.5 2.0
t

degree 3

degree 5

degree 7

degree 9

Differences t 7→ v∗(t, xt) − vr(t, xt)
between the actual value function and
its poly. approx. of deg. r = 3,5,7,9
along the optimal trajectory starting
at (t0, x0) = (0,0)

Observe convergence along this trajec-
tory, as well as time decrease of the
difference



Second example: LQR set control



LQR set control

v∗(t0, x0) :=

infu
∫ 1

t0
(10x2

t + u2
t )dt

s.t. ẋt = xt + ut, xt0 = x0

−2
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0

Contour lines of (t, x) 7→ log(v∗(t, x)− v6(t, x)) with
v6 poly. approx. of deg. 6 to actual value function v∗

obtained by transporting the Lebesgue measure on [−1,1]



Recall the main steps of the moment-SOS aka Lasserre hierarchy.

Given a nonlinear nonconvex problem:

1. Reformulate it as a linear problem (at the price of enlarging

or changing the space of solutions);

2. Solve approximately the linear problem with a hierarchy of

tractable convex relaxations (of increasing size);

3. Ensure convergence: either the original problem is solved

at a finite relaxation size, or its solution is approximated with

increasing quality.

At each step, conic duality is an essential ingredient.



Thank you for your attention !


