Course on LMI optimization with applications in control

Didier Henrion

Maximal positively invariant set approximation

Prague 1 Dec 2022

Recall the main steps of the moment-SOS aka Lasserre hierarchy.

Given a **nonlinear nonconvex** problem:

1. Reformulate it as a **linear** problem (at the price of enlarging or changing the space of solutions);

2. Solve approximately the linear problem with a hierarchy of tractable **convex** relaxations (of increasing size);

3. Ensure **convergence**: either the original problem is solved at a finite relaxation size, or its solution is approximated with increasing quality.

At each step, **conic duality** is an essential ingredient.

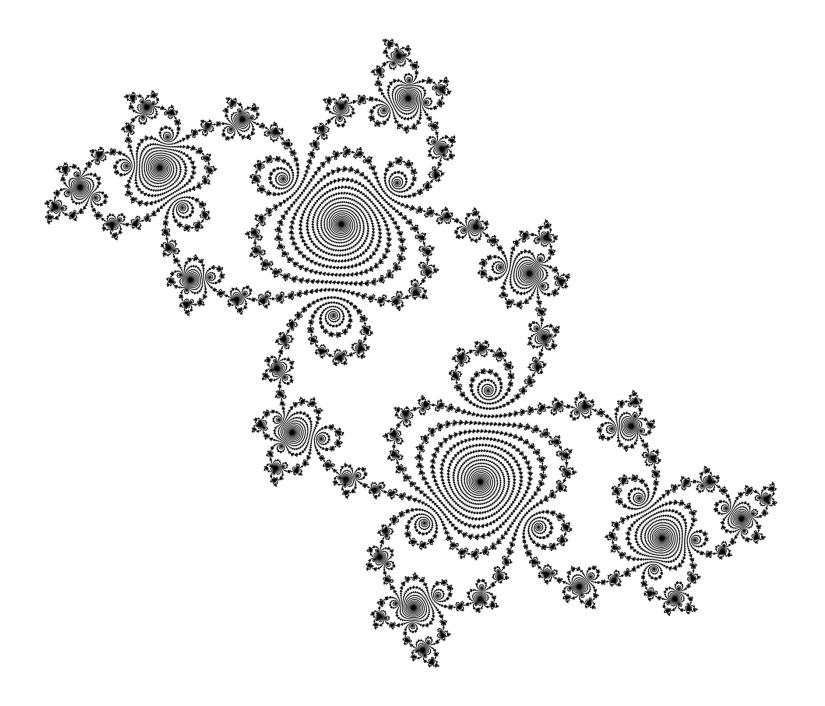
Maximal positively invariant set

We will follow this programme for the problem of estimating the maximal positively invariant (**MPI**) set for a discrete time dynamical system

Given $f : \mathbb{R}^n \to \mathbb{R}^n$ polynomial and a bounded basic semialgebraic set $X := \{x \in \mathbb{R}^n : p_k(x) \ge 0, k = 1, ..., m\}$, the MPI is

$$X_I := \{x_0 \in X : x_{t+1} = f(x_t) \in X, \forall t = 0, 1, \ldots\}$$

Even in the simplest cases (e.g. n = 2 and f quadratic) the MPI can be very complicated



Approximations

We content ourselves with approximations of X_I , whose quality improves at the price of more computation

During this course we will describe the following solution:

The Lasserre hierarchy can generate **outer approximations**

$$X_{Ir} := \{x \in X : v_r(x) \ge 0\} \supset X_I$$

with polynomials $v_r \in \mathbb{R}[x]_r$ converging in volume

 $\operatorname{vol} X_{I\infty} = \operatorname{vol} X_I$

Step 1 - Linear reformulation

For POP the key idea was to formulate an LP on probability measures: an optimal solution to the LP was then the Dirac measure at an optimal solution of the POP

Now for dynamical systems we proceed similarly

Given a trajectory $t \mapsto x_t$, define

$$\mu_t(dx) := \delta_{x_t}(dx)$$

or equivalently for all $A \in \mathscr{B}(X)$

$$\mu_t(A) := I_A(x_t) = \begin{cases} 1 & \text{if } x_t \in A \\ 0 & \text{otherwise} \end{cases}$$

Given an initial condition x_0 and a discount factor $\alpha \in (0, 1)$, define the discounted **occupation measure**

$$\mu(dx|x_0) := \sum_{t=0}^{\infty} \alpha^t \mu_t(dx|x_0)$$

and observe that its mass is finite

$$\mu(X|x_0) = \sum_{t=0}^{\infty} \alpha^t = \frac{1}{1-\alpha}$$

Now suppose that the initial condition x_0 in X is not a single point but a distribution of mass i.e. a probability measure μ_0 in X, and define the average discounted occupation measure

$$\mu(dx) := \int_X \mu(dx|x_0)\mu_0(dx_0)$$

Now we derive an equation linking μ and μ_0

Consider a trajectory $t \mapsto x_t$ staying in X, and observe that for any observable $v \in C(X)$ it holds

$$\int_X v(x)\mu(dx|x_0) = \sum_{t=0}^\infty \alpha^t v(x_t) = v(x_0) + \alpha \sum_{t=0}^\infty \alpha^t v(x_{t+1})$$
$$= v(x_0) + \alpha \sum_{t=0}^\infty \alpha^t v(f(x_t))$$
$$= v(x_0) + \alpha \int_X v(f(x))d\mu(dx|x_0)$$

Integrating with respect to the initial distribution yields

$$\int_X v(x)d\mu(dx) = \int_X v(x)d\mu_0(dx) + \alpha \int_X v(f(x))d\mu(dx)$$

We obtain a linear equation

$$\int_X v(x)d\mu(dx) = \int_X v(x)d\mu_0(dx) + \alpha \int_X v(f(x))d\mu(dx)$$

that we can write by duality

$$\begin{array}{lll} \langle v, \mu \rangle & = & \langle v, \mu_0 \rangle + \alpha \langle v \circ f, \mu \rangle \\ & = & \langle v, \mu_0 \rangle + \alpha \langle v, f_{\#} \mu \rangle \end{array}$$

as a linear equation on measures

$$\mu = \mu_0 + \alpha f_{\#} \mu$$

called the Liouville equation

The Koopman or composition operator

 $v\mapsto v\circ f$

is adjoint to the Frobenius-Perron or push-forward operator

$$\mu \mapsto f_{\#}\mu$$

i.e. $\langle v \circ f, \mu \rangle = \langle v, f_{\#}\mu \rangle$ for all $v \in C(X)$, $\mu \in C(X)'$

Information on the behavior of dynamical system $x_{t+1} = f(x_t)$ can be inferred from a spectral analysis of these linear operators The push-forward or image measure is

$$f_{\#}\mu(A) := \mu(\{x \in X : f(x) \in A\})$$

for all $A \in \mathscr{B}(X)$

Measures μ satisfying $f_{\#}\mu=\mu$ are called **invariant**

The Krylov-Bogolyubov Theorem asserts that if f is continuous and X is compact there is always an invariant measure

Any invariant measure μ solves the Liouville equation

$$\mu = \mu_0 + \alpha f_{\#} \mu$$

for the choice $\mu_0 = (1 - \alpha)\mu$

For example, consider the logistic map

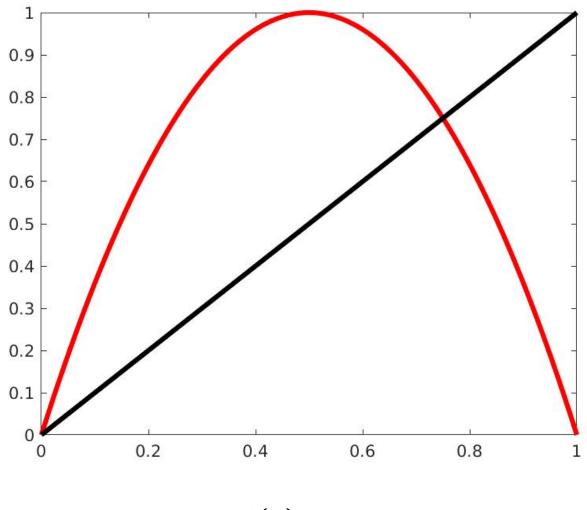
$$f(x) = 4x(1-x)$$

on

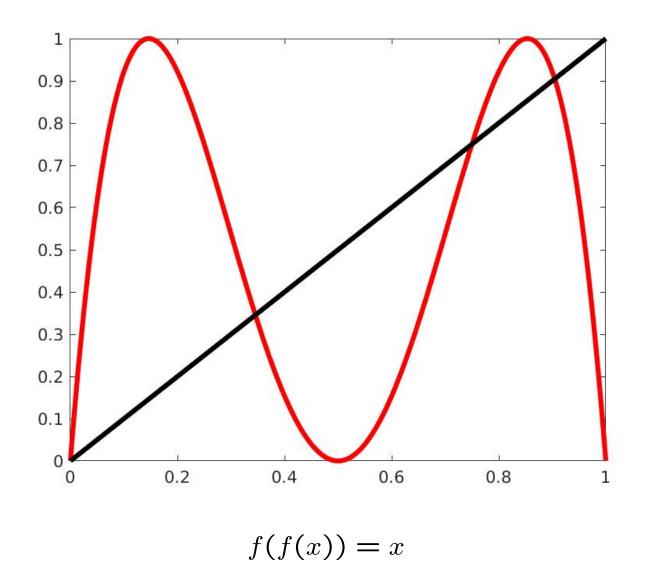
X := [0, 1]

Exercise 2.1:

- a. Given $\mu(dx) = m(x)dx$, derive analytically $f_{\#}\mu$.
- b. Given $\mu(dx) = I_{[0,1]}(x)dx$ compute $f_{\#}\mu$ and $f \circ f_{\#}\mu$.
- c. Prove that $\mu(dx) = dx/(\pi\sqrt{x(1-x)})$ is invariant.
- d. Prove that $\mu(dx) = \delta_{3/4}(dx)$ is invariant.

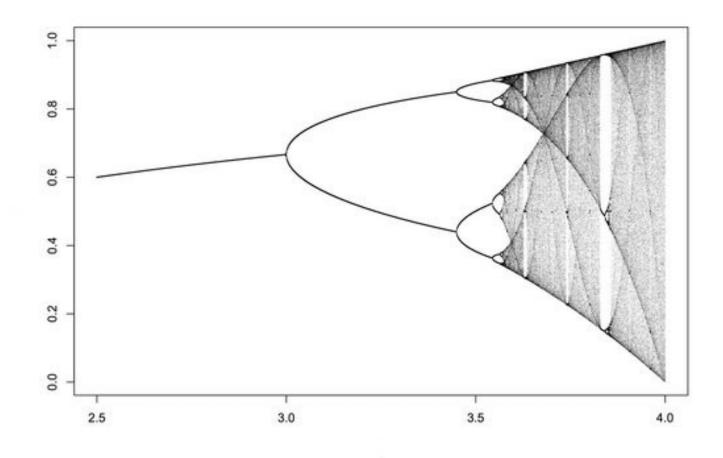


f(x) = x





f(f(f(x))) = x



f(x) = kx(1-x)

Instead of the **nonlinear** dynamical system

$$x_{t+1} = f(x_t)$$

defined on X we have now a **linear** Liouville equatiobn

$$\mu = \mu_0 + \alpha f_{\#} \mu$$

defined on occupation measures on X

For the MPI set $X_I := \{x_0 \in X : x_{t+1} = f(x_t) \in X, \forall t = 0, 1, ...\}$ we have the following result

Lemma: For any μ and μ_0 satisfing the Liouville equation and spt $\mu \subset X$ and spt $\mu_0 \subset X$ it holds

$$\operatorname{spt} \mu_0 \subset X_I$$

where the support of a measure can be defined as

 $\operatorname{spt} \mu_0 := \{ x_0 \in X : \mu_0(\{ x : |x - x_0| \le \varepsilon \}) > 0, \forall \varepsilon > 0 \}$

Since the support of the initial measure is contained in the MPI set we seek an initial measure with largest possible support

To achieve this, consider the LP

$$p^* = \sup \langle 1, \mu_0 \rangle$$

s.t.
$$\mu = \mu_0 + \alpha f_{\#} \mu$$
$$\mu_0 + \hat{\mu}_0 = \lambda_X$$

where λ_X is the Lebesgue measure on X and the optimization variables are μ , μ_0 , $\hat{\mu}_0$ all in $C(X)'_+$

Theorem: The supremum is attained by $\mu_0^* = \lambda_{X_I}$ and hence $p^* = \operatorname{vol} X_I$

Exercise 2.2: Provide a graphical proof to the theorem.

The dual LP reads

$$d^* = \inf \langle w, \lambda_X \rangle$$

s.t. $(v - \alpha v \circ f, w - v - 1, w) \in C(X)^3_+$

or equivalently

$$d^* = \inf \int_X w(x) dx$$

s.t. $\alpha v(f(x)) \le v(x),$
 $w(x) \ge v(x) + 1,$
 $w(x) \ge 0, \quad \forall x \in X$

Exercise 2.3: Derive the dual using convex duality. Prove that there is no duality gap.

For the LP

$$d^* = \inf \int_X w(x) dx$$

s.t. $\alpha v(f(x)) \le v(x),$
 $w(x) \ge v(x) + 1,$
 $w(x) \ge 0, \quad \forall x \in X$

any dual feasible pair (v, w) satisfies $v \ge 0$ and $w \ge 1$ on X_I

To prove this, consider a trajectory $(x_t)_{t=0,1,\ldots} \subset X$ and note that the 1st inequality implies $v(x_0) \ge \alpha v(x_1) \ge \alpha^2 v(x_2) \ge \alpha^t v(x_t) \to 0$ as $t \to \infty$ since $\alpha \in (0, 1)$, $x_t \in X$ and X is bounded

Therefore $v(x_0) \ge 0$ and from the 2nd inequality $w(x_0) \ge 1$

Step 2 - Convex hierarchy

To solve the primal LP

$$p^* = \sup \langle 1, \mu_0 \rangle$$

s.t.
$$\mu = \mu_0 + \alpha f_{\#} \mu$$
$$\mu_0 + \hat{\mu}_0 = \lambda_X$$
$$(\mu, \mu_0, \hat{\mu}_0) \in C(X)_+^{'3}$$

and dual LP

$$d^* = \inf \langle w, \lambda_X \rangle$$

s.t. $(v - \alpha v \circ f, w - v - 1, w) \in C(X)^3_+$

with X bounded basic semialgebraic and f polynomial we can readily use the moment-SOS hierarchy

We replace $C(X)_+$ with $Q(X)_r$ for increasing relaxation order rand we get sequences p_r^* and d_r^* as well as pseudo-moments and polynomials v_r , w_r in $\mathbb{R}[x]_r$

Step 3 - Convergence

Recall that for the primal LP

$$p^* = \sup \langle 1, \mu_0 \rangle$$

s.t.
$$\mu = \mu_0 + \alpha f_{\#} \mu$$
$$\mu_0 + \hat{\mu}_0 = \lambda_X$$
$$(\mu, \mu_0, \hat{\mu}_0) \in C(X)_+^{'3}$$

the optimal value is $p^* = \operatorname{vol} X_I$ attained by $\mu_0^* = \lambda_{X_I}$

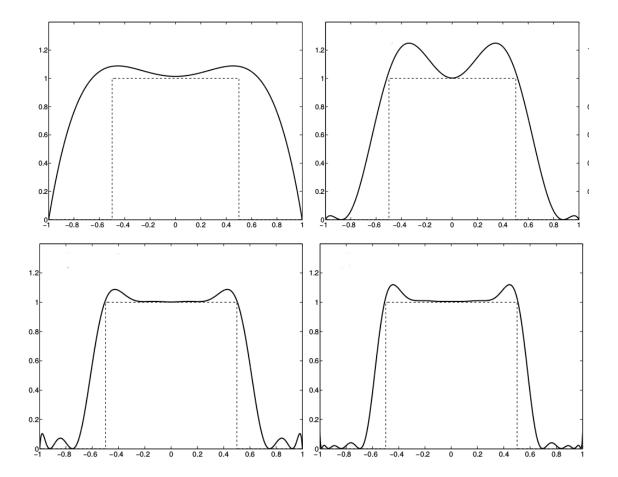
For the dual LP

$$d^* = \inf \langle w, \lambda_X \rangle$$

s.t. $(v - \alpha v \circ f, w - v - 1, w) \in C(X)^3_+$

since $w \ge I_{X_I}$ the objective function is $\int_X w(x) dx = ||w||_{\mathscr{L}_1(X)}$

At optimality by strong duality it is equal to $\int_X I_{X_I} dx = \text{vol } X_I$ and hence it is **not attained** in C(X)



Theorem: By replacing $C(X)_+$ with $Q(X)_r$ we get a monotone converging sequence of upper bounds

$$p_r^* = d_r^* \ge p_{r+1}^* = d_{r+1}^* \ge p_\infty^* = d_\infty^* = \text{vol } X_I$$

Exercise 2.4: Prove it with the Stone-Weierstrass Theorem.

Theorem: In the dual we obtain a sequence of polynomials v_r , w_r in $\mathbb{R}[x]_r$ such that

$$X_{Ir} := \{x \in X : v_r(x) \ge 0\} \supset X_I$$

and

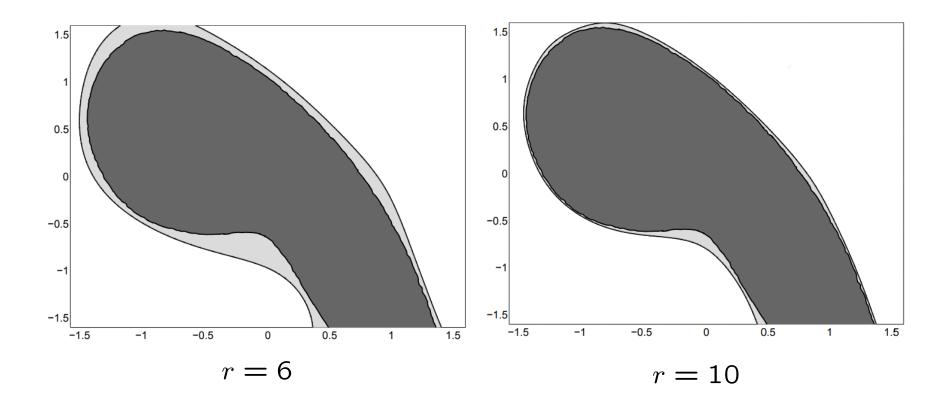
$$\lim_{r\to\infty}\operatorname{vol}(X_{Ir}\setminus X_I)=0$$

Exercise 2.5: Prove it by showing that $w_r \to I_{X_I}$ in $\mathscr{L}_1(X)$.

Examples

Cathala system

$$f(x) = \left(x_1 + x_2, \ -0.5952 + x_2 + x_1^2\right)$$



Julia sets

$$z_{t+1} = z_t^2 + c, \quad z_t \in \mathbb{C}$$

