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Recall the main steps of the moment-SOS aka Lasserre hierarchy.

Given a nonlinear nonconvex problem:

1. Reformulate it as a linear problem (at the price of enlarging

or changing the space of solutions);

2. Solve approximately the linear problem with a hierarchy of

tractable convex relaxations (of increasing size);

3. Ensure convergence: either the original problem is solved

at a finite relaxation size, or its solution is approximated with

increasing quality.

At each step, conic duality is an essential ingredient.



Maximal positively invariant set

We will follow this programme for the problem of estimating

the maximal positively invariant (MPI) set for a discrete time

dynamical system

Given f : Rn → Rn polynomial and a bounded basic semialgebraic

set X := {x ∈ Rn : pk(x) ≥ 0, k = 1, . . . ,m}, the MPI is

XI := {x0 ∈ X : xt+1 = f(xt) ∈ X, ∀t = 0,1, . . .}

Even in the simplest cases (e.g. n = 2 and f quadratic) the MPI

can be very complicated





Approximations

We content ourselves with approximations of XI, whose quality

improves at the price of more computation

During this course we will describe the following solution:

The Lasserre hierarchy can generate outer approximations

XIr := {x ∈ X : vr(x) ≥ 0} ⊃ XI
with polynomials vr ∈ R[x]r converging in volume

volXI∞ = volXI



Step 1 - Linear reformulation

For POP the key idea was to formulate an LP on probability

measures: an optimal solution to the LP was then the Dirac

measure at an optimal solution of the POP

Now for dynamical systems we proceed similarly

Given a trajectory t 7→ xt, define

µt(dx) := δxt(dx)

or equivalently for all A ∈ B(X)

µt(A) := IA(xt) =

{
1 if xt ∈ A
0 otherwise



Given an initial condition x0 and a discount factor α ∈ (0,1),

define the discounted occupation measure

µ(dx|x0) :=
∞∑
t=0

αtµt(dx|x0)

and observe that its mass is finite

µ(X|x0) =
∞∑
t=0

αt =
1

1− α

Now suppose that the initial condition x0 in X is not a single

point but a distribution of mass i.e. a probability measure µ0 in

X, and define the average discounted occupation measure

µ(dx) :=
∫
X
µ(dx|x0)µ0(dx0)



Now we derive an equation linking µ and µ0

Consider a trajectory t 7→ xt staying in X, and observe that for

any observable v ∈ C(X) it holds∫
X
v(x)µ(dx|x0) =

∞∑
t=0

αtv(xt) = v(x0) + α
∞∑
t=0

αtv(xt+1)

= v(x0) + α
∞∑
t=0

αtv(f(xt))

= v(x0) + α
∫
X
v(f(x))dµ(dx|x0)

Integrating with respect to the initial distribution yields∫
X
v(x)dµ(dx) =

∫
X
v(x)dµ0(dx) + α

∫
X
v(f(x))dµ(dx)



We obtain a linear equation∫
X
v(x)dµ(dx) =

∫
X
v(x)dµ0(dx) + α

∫
X
v(f(x))dµ(dx)

that we can write by duality

〈v, µ〉 = 〈v, µ0〉+ α〈v ◦ f, µ〉
= 〈v, µ0〉+ α〈v, f#µ〉

as a linear equation on measures

µ = µ0 + αf#µ

called the Liouville equation



The Koopman or composition operator

v 7→ v ◦ f

is adjoint to the Frobenius-Perron or push-forward operator

µ 7→ f#µ

i.e. 〈v ◦ f, µ〉 = 〈v, f#µ〉 for all v ∈ C(X), µ ∈ C(X)′

Information on the behavior of dynamical system xt+1 = f(xt)

can be inferred from a spectral analysis of these linear operators



The push-forward or image measure is

f#µ(A) := µ({x ∈ X : f(x) ∈ A})

for all A ∈ B(X)

Measures µ satisfying f#µ = µ are called invariant

The Krylov-Bogolyubov Theorem asserts that if f is continuous

and X is compact there is always an invariant measure

Any invariant measure µ solves the Liouville equation

µ = µ0 + αf#µ

for the choice µ0 = (1− α)µ



For example, consider the logistic map

f(x) = 4x(1− x)

on

X := [0,1]

Exercise 2.1:

a. Given µ(dx) = m(x)dx, derive analytically f#µ.

b. Given µ(dx) = I[0,1](x)dx compute f#µ and f ◦ f#µ.

c. Prove that µ(dx) = dx/(π
√
x(1− x)) is invariant.

d. Prove that µ(dx) = δ3/4(dx) is invariant.



f(x) = x



f(f(x)) = x



f(f(f(x))) = x



f(x) = kx(1− x)



Instead of the nonlinear dynamical system

xt+1 = f(xt)

defined on X we have now a linear Liouville equatiobn

µ = µ0 + αf#µ

defined on occupation measures on X

For the MPI set XI := {x0 ∈ X : xt+1 = f(xt) ∈ X, ∀t = 0,1, . . .}
we have the following result

Lemma: For any µ and µ0 satisying the Liouville equation and
spt µ ⊂ X and spt µ0 ⊂ X it holds

spt µ0 ⊂ XI
where the support of a measure can be defined as

spt µ0 := {x0 ∈ X : µ0({x : |x− x0| ≤ ε}) > 0, ∀ε > 0}



Since the support of the initial measure is contained in the MPI

set we seek an initial measure with largest possible support

To achieve this, consider the LP

p∗ = sup 〈1, µ0〉
s.t. µ = µ0 + αf#µ

µ0 + µ̂0 = λX

where λX is the Lebesgue measure on X and the optimization

variables are µ, µ0, µ̂0 all in C(X)′+

Theorem: The supremum is attained by µ∗0 = λXI and hence

p∗ = volXI

Exercise 2.2: Provide a graphical proof to the theorem.



The dual LP reads

d∗ = inf 〈w, λX〉
s.t. (v − αv ◦ f, w − v − 1, w) ∈ C(X)3

+

or equivalently

d∗ = inf
∫
X
w(x)dx

s.t. αv(f(x)) ≤ v(x),
w(x) ≥ v(x) + 1,
w(x) ≥ 0, ∀x ∈ X

Exercise 2.3: Derive the dual using convex duality.

Prove that there is no duality gap.



For the LP

d∗ = inf
∫
X
w(x)dx

s.t. αv(f(x)) ≤ v(x),
w(x) ≥ v(x) + 1,
w(x) ≥ 0, ∀x ∈ X

any dual feasible pair (v, w) satisfies v ≥ 0 and w ≥ 1 on XI

To prove this, consider a trajectory (xt)t=0,1,... ⊂ X and note that

the 1st inequality implies v(x0) ≥ αv(x1) ≥ α2v(x2) ≥ αtv(xt)→ 0

as t→∞ since α ∈ (0,1), xt ∈ X and X is bounded

Therefore v(x0) ≥ 0 and from the 2nd inequality w(x0) ≥ 1



Step 2 - Convex hierarchy



To solve the primal LP

p∗ = sup 〈1, µ0〉
s.t. µ = µ0 + αf#µ

µ0 + µ̂0 = λX
(µ, µ0, µ̂0) ∈ C(X)

′3
+

and dual LP

d∗ = inf 〈w, λX〉
s.t. (v − αv ◦ f, w − v − 1, w) ∈ C(X)3

+

with X bounded basic semialgebraic and f polynomial

we can readily use the moment-SOS hierarchy

We replace C(X)+ with Q(X)r for increasing relaxation order r

and we get sequences p∗r and d∗r as well as pseudo-moments and

polynomials vr, wr in R[x]r



Step 3 - Convergence



Recall that for the primal LP

p∗ = sup 〈1, µ0〉
s.t. µ = µ0 + αf#µ

µ0 + µ̂0 = λX
(µ, µ0, µ̂0) ∈ C(X)

′3
+

the optimal value is p∗ = volXI attained by µ∗0 = λXI

For the dual LP

d∗ = inf 〈w, λX〉
s.t. (v − αv ◦ f, w − v − 1, w) ∈ C(X)3

+

since w ≥ IXI the objective function is
∫
X
w(x)dx = ‖w‖L1(X)

At optimality by strong duality it is equal to
∫
X
IXIdx = vol XI

and hence it is not attained in C(X)



Here is an example of a minimizing sequence wr for XI = [−1
2,

1
2]



Theorem: By replacing C(X)+ with Q(X)r we get a monotone
converging sequence of upper bounds

p∗r = d∗r ≥ p∗r+1 = d∗r+1 ≥ p
∗
∞ = d∗∞ = volXI

Exercise 2.4: Prove it with the Stone-Weierstrass Theorem.

Theorem: In the dual we obtain a sequence of polynomials
vr, wr in R[x]r such that

XIr := {x ∈ X : vr(x) ≥ 0} ⊃ XI
and

lim
r→∞ vol(XIr \XI) = 0

Exercise 2.5: Prove it by showing that wr → IXI in L1(X).



Examples



Cathala system

f(x) =
(
x1 + x2, −0.5952 + x2 + x2

1

)

r = 6 r = 10



Julia sets

zt+1 = z2
t + c, zt ∈ C

r = 12 r = 12


