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Abstract: Results on polynomial fixed order controller design are extended to SISO
gain-scheduling with guaranteed stability and H∞ performance over the whole
scheduling parameter range. Salient features of the approach are (a) the use of
polynomials as modeling objects; (b) the use of flexible LMI conditions allowing
polynomial dependence of the open-loop system and controller transfer functions in
the scheduling parameters; and (c) the decoupling in the LMI conditions between
the Lyapunov variables and the controller variables, allowing both parameter-
dependent Lyapunov functions and fixed-order controller design. The synthesis
procedure is integrated into the ATOL framework developed by the manufacturer
of aircraft and space engines Snecma to systematically design reduced complexity
gain-scheduled control laws for aircraft turbofan engines.
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1. INTRODUCTION

Gain-scheduled control laws are widely applied
to industrial plants whose dynamical properties
strongly vary with the operating point or the
environment. There exist various techniques for
gain-scheduling, from ad hoc tuning procedures
to more sophisticated techniques ensuring sta-
bility and performances over the whole operat-
ing range, see (Leith and Leithead, 2000; Rugh
and Shamma, 2000) for comprehensive surveys. In
the latter category we can find linear parameter-
varying (LPV) controller design via convex op-
timization over linear matrix inequalities (LMI),
a methodology which has found various appli-
cations especially in the aerospace industry. In
particular, as shown recently in (Balas, 2002) or
(Bruzelius, 2004) these techniques can succesfully
be applied to control aircraft turbofan engines,
which are characterized by a strong sensitivity of

the system dynamics with respect to the flight en-
velope (power lever angle, aircraft speed, altitude)
or the environment (inlet pressure, temperature).

The main drawbacks of currently available design
procedures for LPV/LMI gain-scheduling are as
follows:

• a linearizing change of variables is used to en-
sure convexity of the LMI design conditions,
and the controller must be reconstructed us-
ing tedious linear algebra, see (Scherer and
Weiland, 2000) for a good overview;

• the order of the controller must be equal to
the order of the plant plus the order of the
weighting functions, which is contradictory
with the sometimes stringent reduced com-
plexity specifications ubiquitous in embed-
ded aerospace control systems;



• an appropriate state-space canonical form
must be obtained over the whole operating
range.

All these issues are explicitely and fairly enumer-
ated in the recent paper (Wassink et al., 2005)
where an LPV/LMI gain-scheduled control law is
designed for a mechatronics system.

In this paper we propose an original gain-scheduling
design procedure which is aimed at removing the
above drawbacks:

• the controller variables appear explicitly as
decision variables in the design LMI;

• the order of the controller as well as its struc-
ture are fixed from the outset, independently
of the open-loop system order and weighting
functions;

• the design conditions are directly formulated
in the polynomial setting.

Our main objective is to provide a relatively
simple design methodology integrated into the
ATOL control design framework (Vary and Re-
berga, 2005) developed by Snecma 1 .

Earlier works resulted in a collection of linearized
models at various operating points (Henrion et

al., 2004) as well as LPV models for turbofan
engine transfer functions (Reberga et al., 2005),
and in this paper we use these models to validate
our gain-scheduling design procedure.

2. PROBLEM STATEMENT

We consider a continuous SISO open-loop plant
modeled by a transfer function G(s, θ) = B(s, θ)/
A(s, θ) where A and B are polynomials in the
Laplace indeterminate s ∈ C, both parametrized
in a vector θ ∈ R

p, capturing the evolution of the
model with respect to its environment. We assume
that θ is a time-varying vector of exogeneous
variables that can be measured in real-time. It
belongs to a semialgebraic set

Θ = {θ ∈ R
q : gi(θ) ≥ 0, i = 1, ..r} (1)

where gi are given multivariate polynomials.
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Fig. 1. Negative feedback configuration

Let K(s, θ) = Y (s, θ)/X(s, θ) be a controller
depending also on θ. This controller is placed
in a negative feedback configuration as shown in

1 Snecma is, within the SAFRAN Group, dedicated to

design, development and production of engines for civil,

military aircraft, launch vehicles and satellites.

Figure 1. We outline that neither the order of the
controller nor its structure depend on the open-
loop plant order or structure.

We denote by M(s, θ) = N(s, θ)/D(s, θ) any
closed-loop transfer function with this configura-
tion. M can be the closed-loop transfer function
BY/(AX + BY ) between reference signal r and
output signal y, or the sensitivity transfer function
AX/(AX+BY ) between r and error signal e. Note
that in any case, M can be represented by two
polynomials where the numerator and the denom-
inator are both linear in controller polynomials X
and Y .

With these notations, the problem we are to solve
can be expressed as follows.

LPV design problem: Given open-loop plant
G(s, θ), find controller K(s, θ) such that the
closed-loop system M(s, θ) is stable and its H∞

norm is less than a given bound γ, for all θ in Θ.

To address this LPV design problem, we decom-
pose it into three steps:

(1) Sufficient LMI conditions are derived to guar-
antee stability of a polynomial.

(2) These conditions are extended to robust sta-
bility of a polynomial affected by additive
unstructured norm-bounded uncertainty.

(3) The conditions are further extended to the
case of polynomials with coefficients depend-
ing polynomially on θ.

3. LPV PROBLEM

In the sequel, we associate to any polynomial
R(s) =

∑d

i=0
ris

i of degree d the vector of its
coefficients R =

[

r0 r1 ... rd

]

.

3.1 Stability of a polynomial

In this paper a stable polynomial is a polynomial
with roots in the open left half-plane.

Consider a transfer function M(s) = N(s)/D(s),
with no dependence on parameter θ, where
D(s) =

∑d

i=0
dis

i and N(s) =
∑d

i=0
nis

i are poly-
nomials of degree d. We define yM (t) and uM (t) as
the output and input signals of this transfer func-
tion so that: YM (s)/UM (s) = N(s)/D(s), where
UM (s) and YM (s) are respectively the Laplace
transforms of signals uM (t) and yM (t).

Sufficient conditions for stability of this transfer
function are now given, based on Lyapunov’s sta-
bility theory (de Oliveira and Skelton, 2001). An
alternative proof based on polynomials positivity
can be found in (Henrion et al., 2003a; Henrion et

al., 2003b).



Define a state-vector x(t) = [yM ; dyM/dt; . . .
dd−1yM/(dt)d−1] and ξ(t) = [x; ddyM/(dt)d].

Let

Π1 =







0 1
...

. . .

0 1






, Π2 =







1 0
. . .

...
1 0







be d-by-(d+1) matrices so that: x(t) = Π2ξ(t) and
ẋ(t) = Π1ξ(t). Consider a quadratic Lyapunov
function V such that : V (t) = x∗(t)Px(t) =
ξ∗(t)Π∗

2PΠ2ξ(t) and where the star denotes trans-
position. Finally, define the linear mapping F (P ) =
−Π∗

1PΠ2 − Π∗

2PΠ1.

Theorem 1. Given a stable polynomial C(s), poly-
nomial D(s) is stable if there exists a symmetric
matrix P such that:

C∗D + D∗C − F (P ) � 0

where � 0 stands for positive semidefinite, i.e all
eigenvalues real nonnegative.

Polynomial C(s) is called the central polynomial.
It plays a key role, see section 4.1.

Proof of Theorem 1: It closely follows (de Oliveira
and Skelton, 2001). First, for zero initial con-
ditions, recall that asymptotic stability of the
dynamical system described in the Laplace do-
main by the algebraic relation D(s)YM (s) =
N(s)UM (s) depends only on the roots of poly-
nomial D(s), which must belong to the open left
half-plane.

Following Lyapunov’s second approach, asymp-
totic stability of this system is also equivalent to
the sign conditions V (t) > 0 and V̇ (t) ≤ 0 along
system trajectories, i.e. for all vectors ξ(t) such
that Dξ(t) = 0. By construction of the linear map-
ping F , the time-derivative of the Lyapunov func-
tion is given by V̇ (t) = −ξ∗(t)F (P )ξ(t). Hence
the stability conditions can be summarized as:

V > 0 ⇐⇒ ξ∗Pξ > 0

V̇ ≤ 0 ⇐⇒ ξ∗F (P )ξ ≤ 0
Along system trajectories ⇐⇒ Dξ = 0.

Applying Finsler’s Lemma to the last two quadratic
inequalities, it follows that there exists a vector C
(same dimensions as D) such that:

C∗D + D∗C − F (P ) � 0
P ≻ 0.

(2)

The condition P ≻ 0 can be removed since C(s)
is stable, see (Henrion et al., 2003a). 2

3.2 H∞ performance

Suppose now that polynomial D(s) is affected by
an additive norm-bounded uncertainty: D∆(s) =
D(s) + ∆N(s), ‖∆‖∞ ≤ γ−1, where ∆ is a
matrix of unstructured uncertainty and γ is a
given positive scalar.

According to the small-gain theorem (Skogestad
and Postlethwaite, 1996), robust stability of poly-
nomial D∆(s) is equivalent to the H∞ perfor-
mance constraint:

‖N(s)D−1(s)‖∞ < γ. (3)

Theorem 2. Given a stable polynomial C(s), the
transfer function N(s)/D(s) is stable and satisfies
the H∞ performance constraint (3) if there exists
a symmetric matrix P and a scalar λ such that:
[

C∗D + D∗C − F (P ) − λC∗C N∗

N λγ2In

]

� 0. (4)

Proof of Theorem 2: The proof is derived in
two steps. Applying first Theorem 1 to uncertain
polynomial D∆(s) yields the uncertain LMI

C∗(D + ∆N) + (D∗ + N∗∆∗)C − F (P ) � 0

or equivalently, the quadratic inequality

ξ∗ (C∗(D + ∆N) + (D∗ + N∗∆∗)C − F (P )) ξ ≥ 0

that must hold for all vectors ξ.

Denoting z = ∆∗Cξ, this can be expressed as:
[

ξ
z

]∗ [

C∗D + D∗C − F (P ) N∗

N 0

] [

ξ
z

]

≥ 0. (5)

Moreover, the assumption on the complex uncer-
tainty block ‖∆‖∞ ≤ γ can be rewritten as

γ−2I − ∆∆∗ � 0

or equivalently, as the quadratic inequality

ξ∗C∗Cξ − γ2z∗z ≥ 0. (6)

Then, applying, the S-procedure (de Oliveira and
Skelton, 2001) on quadratic inequalities (5) and
(6) yields robust LMI (4).2

3.3 Extension to LPV systems

Suppose now that polynomials N(s) and D(s) de-
pend also polynomially on a vector of parameter θ
defined as in Section 2. We denote this dependence
as follows:

D(s, θ) =
∑

α∈Nq

Dα(s)θα, N(s, θ) =
∑

α∈Nq

Nα(s)θα



where Dα(s) and Nα(s) are polynomials of degree
d in s.

Recall that polynomials N(s) and D(s) depend
linearly on the coefficients of controller polyno-
mials X(s) and Y (s), which are our decision vari-
ables. Let us gather these variables into a vector k,
together with the entries of matrix P and scalar λ.
Inequality (4) becomes an LMI in k polynomially
parametrized in θ:

(7)

L(k, θ) =
∑

α

Lα(k)θα =

[

C∗D(θ) + D(θ)∗C − F (P ) − λC∗C N(θ)∗

N(θ) λγ2In

]

� 0.

The problem here is to find parameter k ensuring
positive semidefiniteness of this matrix inequality
for all values of parameter θ in Θ. This is a
parametrized LMI problem, a semi-infinite convex
optimization problem which is difficult to solve
in general. Several numerical methods have been
proposed recently, see for instance the survey
(Scherer, 2006). The technique presented here is
based on a matrix extension of a representation
result proposed by Putinar for polynomial positive
on semialgebraic sets.

We make the non-restrictive assumption that the
semialgebraic set Θ is compact and that it is
included in a ball of radius ρ centered around the
origin, so that in the description (1) we can add
the redundant constraint gr+1(θ) = ρ2−‖θ‖2

2 ≥ 0.

Lemma 1. There exists k such that L(k, θ) ≻ 0
for all θ ∈ Θ if and only if there exist sum-
of-squares matrix polynomials Mi(θ) such that

L(k, θ) = M0(θ) +
∑r+1

i=1
gi(θ)Mi(θ).

Proof of Lemma 1: See Theorem 24 in (Scherer,
2006), an extension to the matrix case of a scalar
result by Putinar used for polynomial optimiza-
tion in (Lasserre, 2001).2

The discrepancy between the strict inequality in
Lemma 1 and the non-strict inequality (7) is not
relevant numerically speaking since L(k, θ) ≻ 0
can be written as L(k, θ) � ǫI for an arbitrarily
small positive scalar ǫ.

Checking if a multivariate matrix polynomial of
given degree is a sum-of-squares amounts to solv-
ing an LMI problem (Scherer, 2006), but we do
not know in advance the degree of the polynomials
Mi(θ). So in practice solving parametrized LMI
(7) amounts to solving a hierarchy of LMI of
increasing size, in the same spirit as in (Lasserre,
2001).

3.4 Remarks

Discrete-time systems could also be considered,
via an appropriate change of the linear mapping
F (P ). See (Henrion et al., 2003a; Henrion et

al., 2003b) for instance.

Since the Lyapunov matrix P is chosen to be con-
stant, LMIs (7) ensure quadratic stability (Scherer
and Weiland, 2000). It could also depend on θ. In
that case, the polynomial matrix L(k, θ) in (7) is
slightly modified but the rest of the approach is
valid.

Other representations for matrix polynomials pos-
itive semidefinite on semialgebraic sets can be
used in Lemma 1, see (Scherer, 2006) for a survey.
These representations provide sufficient finite-
dimensional LMI conditions for solving polyno-
mially parametrized LMI on compact sets, and
necessity is recovered only asymptotically, i.e. for
multipliers of arbritrary large degree.

Although the approach is presented for SISO
transfer functions, it is worth mentioning that it is
still relevant for MIMO (Multiple Input Multiple
Output) systems. The only additional assumption
is to consider MIMO transfer functions with scalar
denominators. Indeed, in the general MIMO case,
as the product of matrices is not commutative,
in a closed-loop transfer M(s, θ) the polynomial
matrices X(s) and Y (s) of the controller do not
typically enter affinely the numerator and the de-
nominator. Choosing scalar denominators is non-
restrictive: one can always take the least common
multiple of denominators of the scalar transfer
functions.

4. APPLICATION TO A TURBOFAN
ENGINE

We now apply this technique to the control of
a turbofan engine. In (Henrion et al., 2004; Re-
berga et al., 2005) we obtained LPV models of
different loops of a turbofan. The models depend
on the scalar variable θ = PS32, representing
the pressure in the combustion chamber. In this
paper we use two of these models to study two
particular transfers. The first one involves the fuel
flow input WF32 and the compressor speed XN25.
The second is between WF32 and the low pressure
fan speed XN2.

The LMI problems were parsed by the YALMIP
interface 3.0 (Löfberg, 2001) which handles poly-
nomial matrix sum-of-squares problems. Result-
ing semidefinite programs were solved by SeDuMi
1.1 (Sturm, 1999) on Matlab 6.5. LPV controllers
are validated on a nonlinear Simulink turbofan en-
gine model provided by Snecma. Different points
of the flight envelope (altitude and Mach number



combinations) can be chosen to check robustness
of the system. Due to saturation limits for WF32 a
basic anti-windup scheme (Gomes da Silva Jr. and
Tarbouriech, 2005) is added for the validations.
For confidentiality reasons, the units and scales
do not appear on the figures.

Before presenting these applications, we focus on
the tuning of the central polynomial which is the
key ingredient of the approach.

4.1 Central polynomial tuning

As mentioned in (Henrion et al., 2003b), it is hard
to give a general formula for the choice of the
central polynomial. Somehow, it can be compared
to the choice of the weighting filters of the mixed
sensitivity problem, see (Skogestad and Postleth-
waite, 1996) for example. The only necessary con-
dition is to choose a stable polynomial.

In this paper, we try to show the impact of this
parameter on the closed-loop system behaviour.
Although it is difficult to prove theoretically that
C(s) can be considered as a possible pole place-
ment, Figure 2 shows that there is a genuine link
between the roots of the central polynomial and
the poles of the closed-loop system: the poles of
the LPV closed-loop system tend to be close to
the roots chosen for C(s). On each of the root
locii we represent the migration of 4 closed-loop
poles for various operating points, that is, various
values of the scheduling parameter θ.
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Fig. 2. Compared closed-loop system poles for
various operating points and three different
central polynomials.

In the case of an application, a good knowledge
of the process is also useful. Keeping in mind
the natural good dynamics of the model gives
indications on the desired closed-loop system and
so on the roots of the central polynomial.

Recall that the degree of C(s) is equal to the
degree of the denominator D(s, θ) of the transfer

function. When the degree of the denominator
increases, so is the number of roots of C(s) to be
chosen. This gives more degrees of freedom, but
the tuning is necessarily more involved. Also the
LMIs are larger, hence potentially more difficult
to solve.

Undoubtedly, these indications remain vague. As
explained before, it is the designer’s task to choose
the adequate central polynomial. Since there is
no criterion over C(s) to optimize in the design
LMI, several iterations are necessary to find out a
consistent central polynomial. This is the key to
a successful synthesis.

4.2 WF32-XN25 loop

The polynomial approach is applied to control a
second order model with an affine dependence on
θ. We seek an LPV PI controller, whose transfer
function can be written:

K(s, θ) = (ki1 + ki2θ)
1

s
+ (kp1 + kp2θ). (8)

Closed-loop simulations of the LPV system are
shown on Figure 3. The corresponding variations
of θ are presented on Figure 4.

time

X
N

2
5

reference

output

Fig. 3. Control of the WF32-XN25 loop. Step
response. Altitude: 10000ft, Mach: 1.3.

Tracking is ensured by the integrator in the con-
troller, and the time-response behavior is moni-
tored by a suitable choice of C(s).

4.3 WF32-XN2 loop

We consider a first order open-loop LPV model
of this loop with a second order dependence on θ.
We control it with a second order LPV controller.

Figure 5 represents the closed-loop system for a
variation of parameter θ given by Figure 6.



time

θ

Fig. 4. Control of the WF32-XN25 loop. Evolution
of the scheduling parameter θ.
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Fig. 5. Control of the WF32-XN2 loop. Step
response. Altitude: 0ft, Mach: 0.

time

θ

Fig. 6. Control of the WF32-XN2 loop. Evolution
of the scheduling parameter θ.

5. CONCLUSION

We have described an extension of the fixed-
order controller design procedure of (Henrion et

al., 2003b) to SISO gain-scheduling design with
guaranteed H∞ performance over the whole pa-
rameter range. We used the idea of central polyno-
mial developed in (Henrion et al., 2003b) in order
to derive an LMI formulation with the following
characteristics:

• the controller variables appear explicitly as
decision variables in the design LMI, thus
avoiding the use of tedious linear algebra to
reconstruct controller parameters;

• the order and the structure of the controller
can be fixed from the outset, independently
of the open-loop system order and weighting
functions;

• the design conditions are directly formulated
in the polynomial setting, using polynomial
matrix fraction descriptions;

• we allow polynomial dependence of the open-
loop system and controller transfer functions
in the scheduling parameters;

• a decoupling between the Lyapunov variables
and the controller variables allows the use of
parameter-dependent Lyapunov functions.

The gain-scheduling design procedure was vali-
dated in the scope of an on-going industrial re-
search project on aircraft turbofan engine con-
trol. It is integrated within the ATOL software
framework developed by Snecma (Vary and Re-
berga, 2005).

The main difficulty of the approach is of course
the appropriate choice of the central polynomial.
Roughly speaking, as explained in (Henrion et

al., 2003b), the central polynomial enforces the
pole dynamics desired in closed-loop. For a given
choice of a central polynomial, if the design LMI
are infeasible, then it may mean that the desired
closed-loop dynamics are not achievable. Unfor-
tunately, it may also happen that the desired
dynamics are achievable, but that the design LMI
are too conservative to retrieve the appropriate
controller. This is the main limitation of the whole
approach.

We do not expect difficulties when extending the
approach to MIMO systems, as soon as we pre-
serve linearity of the numerator and denominator
polynomials in the controller coefficients.

Open issues and future research directions related
with this work can be sketched as follows:

• better characterize the impact of the choice
of the central polynomial on the achievable
closed-loop performance;

• integrate time-domain constraints (overshoot,
saturation) and/or combine with anti-windup
design in the scope of aircraft turbofan en-
gine control;



• study numerical aspects related with condi-
tioning of the design LMI, study alternative
choices of polynomial bases.
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Positive polynomials and robust stabilization
with fixed-order controllers. IEEE Trans. on

Automatic Control 48(7), 1178–1186.
Lasserre, J.-B. (2001). Global optimization with

polynomials and the problem of moments.
SIAM J. on Optimization 11(3), 796–817.

Leith, D.J. and W.E. Leithead (2000). Survey of
gain-scheduling analysis and design. Int. J.

Control 73(11), 1001–1025.
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