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Abstract

A reduction procedure based on semidefinite programming duality is applied
to LMI conditions for fixed-order scalar linear controller design in the polynomial
framework. It is namely shown that the number of variables in the reduced design
LMI is equal to the difference between the open-loop plant order and the desired
controller order. A standard linear system of equations must then be solved to
retrieve controller parameters. Therefore high computational load is not necessarily
expected when the number of controller parameters is large, but rather when a large
number of plant parameters are to be controlled with a small number of controller
parameters. Tailored interior-point algorithms dealing with the specific structure of
the reduced design LMI are also discussed.

Keywords: Linear systems, Fixed-order controller design, Polynomials, Linear matrix
inequalities (LMI), Semidefinite programming (SDP), Interior-point methods.

1 Introduction

Recently, sufficient LMI conditions were described for fixed-order scalar linear controller
design in a pure polynomial, or algebraic framework, based on polynomial positivity
conditions [9]. It was shown that the fixed-order controller design conditions, which are
non-convex in general, can be formulated as convex LMI conditions as soon as a design
parameter, called central polynomial, is fixed. The central polynomial plays the role of a
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reference, or target closed-loop characteristic polynomial around which design is carried
out. Extensive numerical experiments revealed that in most cases, the choice of the central
polynomial is easy, depending both on the open-loop dynamics (e.g. non-minimum phase
zeros) and the required closed-loop dynamics (e.g. damping of flexible modes).

The fixed-order design LMI conditions described in [9] have a particular structure which
is reminiscent of the Kalman-Yakubovich-Popov (KYP) lemma. LMI decision variables
can be gathered into two categories:

• a small number of controller parameters, which are coefficients of the numerator
and denominator controller polynomials;

• a large number of additional parameters, which are entries of a Lyapunov-like matrix
proving positivity of the LMI, and hence acting as a closed-loop stability certificate.

Controller parameters and additional parameters appear in a decoupled fashion in the
LMI. As shown in [9] this decoupling can be exploited to reduce conservatism when
performing robust controller design, but this is out of the scope of this note.

In the sequel we will show that the decoupling between controller and additional param-
eters can also be exploited to reduce significantly the number of decision variables in the
LMI fixer-order controller design conditions. We use ideas on SDP duality and the KYP
lemma originally described in [4, 5, 6, 13, 12]. We obtain dual LMI design conditions where
the number of decision variables is considerably reduced, and is equal to the difference
between the open-loop plant order and the desired controller order. Tailored interior-
point algorithms are described and discussed for solving the reduced LMI problems and
recovering corresponding multipliers. After solving the LMI, controller parameters can
be retrieved from the multipliers by solving a standard linear system of equations.

2 LMI formulation of fixed-order controller design

We are seeking a controller y(s)/x(s) of fixed order stabilizing a given open-loop plant
b(s)/a(s).

More specifically, given polynomials a(s) and b(s) of degree n, we must find polynomials
x(s) and y(s) of degree m such that the closed-loop denominator polynomial

c(s) = a(s)x(s) + b(s)y(s)

has all its roots in a given stability region D = {s : d11 + d21s+ d?21s
? + d22s

?s < 0}. The
stability region is characterized by matrix

D =

[
d11 d?21

d21 d22

]
.
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Choose d11 = 0, d21 = 1, d22 = 0 for continuous-time, or Hurwitz stability, and d11 = −1,
d21 = 0, d22 = 1 for discrete-time, or Schur stability. Other values correspond to arbitrary
half-planes and disks, see [9]. When all roots of a polynomial lie within region D, we say
that the polynomial is D-stable.

Let p = n+m be the closed-loop system order, let

Π =

[
Ip 0p×1

0p×1 Ip

]

and define

D(P ) = Π?(D ⊗ P )Π =
p(p+1)/2∑
j=1

pjDj

where P is a Hermitian matrix of dimension p, with individual entries pj.

In [9] a sufficient LMI condition for designing a fixed-order D-stabilizing controller is
given, based on the idea of a central polynomial. Central polynomial d(s) is a reference,
or target closed-loop denominator polynomial around which c(s) is designed.

Let

c =
[
c0 c1 · · · cp

]

=
[
x1 x2 · · · xm+1 xm+2 xm+3 · · · 1

]
︸ ︷︷ ︸[

x 1
]



b0 b1 · · · bn
0 b0 · · · bn−1 bn

. . . . . .

b0 b1 · · · bn
a0 a1 · · · an
0 a0 · · · an−1 an

. . . . . .

a0 a1 · · · an


︸ ︷︷ ︸

S

be the coefficient vector of polynomial c(s) = c0 + c1s + · · · + cps
p, an affine function

of coefficients of controller polynomials y(s) = x1 + x2s + · · · + xm+1s
m and x(s) =

xm+2 + xm+3s + · · · + sm (assumed to be monic). The 2m + 1 controller coefficients are
gathered into vector x, and matrix S is referred to as the Sylvester matrix of order m,
with size 2(m+ 1)-by-(p+ 1). Let d = [d0 d1 · · · dp] be the coefficient vector of central
polynomial d(s) = d0 + d1s+ · · ·+ dps

p and define

F (x) = F0 +
2m+1∑
i=1

xiFi = d?c+ c?d

as an affine map acting on controller coefficient vector x.

With these notations, the fixed-order controller design LMI conditions of [9] can be for-
mulated as follows.

3



Lemma 1 Given open-loop plant polynomials a(s), b(s) of degree n and a D-stable central
polynomial d(s) of degree p = n+m, if LMI

F (x) +D(P ) � 0 (1)

is feasible for vector x and Hermitian matrix P , then the corresponding controller polyno-
mials x(s), y(s) of degree m ensure D-stability of closed-loop polynomial c(s) = a(s)x(s)+
b(s)y(s).

It is observed that two categories of decision variables appear in a decoupled fashion in
LMI (1), namely

• a small number 2m+ 1 of controller parameters, and

• a larger number p(p+ 1)/2 of parameters in a KYP-like term ensuring D-stability.

3 Dual LMI formulation

We reformulate LMI feasibility problem (1) as an LMI optimization problem

λ? = max λ
s.t. F (x) +D(P ) � λI

(2)

whose optimum λ? is strictly positive if and only if LMI (1) is strictly feasible. There is
always a strictly feasible point for LMI problem (2), so the duality gap is zero [1] and we
can derive a dual formulation for LMI problem (2).

Lemma 2 Primal LMI (1) is feasible if and only if λ? > 0 in dual LMI

λ? = min trace(F0Z)
s.t. trace(FiZ) = 0, i = 1, . . . , 2m+ 1

trace(DjZ) = 0, j = 1, . . . , p(p+ 1)/2
trace Z = 1
Z � 0.

(3)

Hermitian matrix Z has dimension p+ 1, so it has (p+ 1)(p+ 2)/2 individual entries.

4 Reduced dual LMI formulation

In dual LMI (3), the null-space constraints

trace(FiZ) = 0, i = 1, . . . , 2m+ 1
trace(DjZ) = 0, j = 1, . . . , p(p+ 1)/2

(4)
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can be written equivalently as

Z =
q∑

k=0

zkNk

where basis matrices Nk are Hermitian and span a linear subpsace of dimension q + 1.

If poynomials a(s) and b(s) are coprime, Sylvester matrix S has full row rank, and there
is generically no redundant equation in system (4). Then the dimension of the null-space
is equal to q + 1 where

• q = (p+ 1)(p+ 2)/2− p(p+ 1)/2− (2m+ 1)− 1 = n−m− 1 if m ≤ n

• q = 0 if m > n.

It can be checked that N0 can always be chosen as a matrix with all zeros but the bottom
right entry which is equal to one, so that trace Z = z0 +

∑q
k=1 zktrace Nk = 1 and hence

trace(F0Z) = z0trace(F0N0) +
∑q
k=1 zktrace(F0Nk) = f0 +

∑q
k=1 fkzk where

f0 = trace(F0N0), fk = trace(F0Nk)− trace(F0N0)traceNk, k = 1, . . . , q.

Similarly, we denote Z = G0 +
∑q
k=1 zkGk where

G0 = N0, Gk = Nk − (traceNk)N0, k = 1, . . . , q.

We have shown our main result.

Theorem 1 Primal LMI (1) is feasible if and only if λ? > 0 in reduced dual LMI

λ? = min f0 +
∑q
k=1 fkzk

s.t. G0 +
∑q
k=1 zkGk � 0.

(5)

5 Retrieving controller parameters

Suppose that reduced dual LMI (5) is solved with an interior-point algorithm, returning
λ? > 0. In order to retrieve original controller parameters x solving LMI (1), it is assumed
that the dual variable to LMI (5) is also available. In a later section we describe tailored
interior-point algorithms to solve LMI (5) efficiently and to recover the multipliers.

Since the dual to LMI (5) is the reduced primal LMI

λ? = max f0 + trace(G0X)
s.t. trace(GkX) = fk, k = 1, . . . , q

X � 0
(6)

we assume that we are given the Hermitian positive semidefinite (PSD) matrix X.
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Conic complementarity ensures that XZ = 0 and

X = F (x) +D(P )− λI � 0

for some x (to be found) and P . Therefore

trace(Dj(X + λI)) = trace(DjF (x)) + trace(DjD(P ))
= trace(DjF0) +

∑2m+1
i=1 xi trace(DjFi)

(7)

for all index j since by duality trace(DjD(P )) = 0 for all P .

Denoting Aji = trace(DjFi) and bj = trace(Dj(X + λI − F0)) for i = 1, . . . , 2m + 1 and
j = 1, . . . , p(p+ 1)/2 as the entries of a matrix A and vector b, respectively, equations (7)
form an overdetermined consistent linear system of equations

Ax = b (8)

from which we can retrieve vector x.

6 Case m ≥ n− 1

When m ≥ n− 1, the only null-space basis matrix N0 is the zero matrix with a one in its
bottom right entry. Hence z0 = 1 and Z = N0 in dual LMI (3), yielding λ? = 2, the right
bottom entry in matrix F0. As a result, primal LMI (1) is always feasible.

This is not surprising, since it is well-known that a linear system of order n can always
be stabilized with a controller of order m = n− 1 or higher. This result is coined out by
Dorato as the fundamental theorem of feedback control, see [3, Section 3.2].

In this case any PSD matrix X with zero last row and column is a valid solution for LMI
(6). Using results of [8], it can be shown that (in continuous-time) matrix A is related to
the Hurwitz matrix of central polynomial d(s), which is guaranteed to be non-singular if
d(s) is stable.

Consequently, for a given central polynomial d(s), a whole set of stabilizing controllers
can be parametrized from the top left block in X, which describes the whole cone of
PSD matrices of dimension p. Since matrix A in linear system (8) is independent of X,
controller coefficients can be parametrized by varying right hand-side vector b and letting
x = A†b where A† is the pseudo-inverse of matrix A.

7 Numerical concerns

Modern SDP solvers strongly exploit problem sparsity, so it is crucial to preserve sparsity
and structure when applying the reduction procedure. The key step is the extraction of
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null-space basis matrices Ni satisfying linear equations (4). We are currently investigating
algebraic properties of these equations, so that matrices Ni can be derived without the
singular value decomposition or the QR factorization, which do not preserve sparsity in
general. The two step null-space extraction algorithm described in [7] can also useful:
first the matrix is reduced to echelon form via Householder transformations; then its null-
space is derived via Gaussian elimination with pivoting and backward substitution. Both
steps use backward stable numerical operations, and if the original matrix is sparse then
it is expected that some sparsity is preserved in the obtained null-space basis, as well as
in the reduced dual LMI (5).

Further efforts must be dedicated to studying numerical properties of reduced dual LMI
(5), which has a very particular structure. When working with continuous-time poly-
nomials, numerical problems are expected since the reduced null-space basis is made of
exponentially ill-conditioned Hankel matrices. Even though there is no satisfying tractable
measure of the conditioning of an LMI problem, it is expected that the standard condi-
tioning of linear system of equations (8) obtained when deriving controller parameters
from dual variables plays a key role in the design algorithm. Being able to distinguish
between well-conditioned and ill-conditioned formulations of control problems would cer-
tainly save a significant amount of time to designers, and would also allow improving the
overall numerical behavior of currently available LMI solvers, which is still unsatisfying
for a lot of physically meaningful instances (e.g. flexible modes).

8 Dedicated interior-point algorithms

Primal-dual Interior-Point (IP) algorithms for solving SDP problems, such has the one
implemented in SeDuMi [11], have become very popular. The reason is that for small
to medium size problems they produce very efficient search directions and outperform
pure primal or pure dual methods. However, the cost of computing and storing the
dual iterate might be costly. Moreover, for large scale problems the cost of forming the
equations for the search directions becomes very high unless some structure is exploited.
Many large-scale problems are sparse and of low rank, and for this type of problems it is
possible to utilize the structure to form the equations for the search directions in a clever
way in order to reduce the cost. When other types or additional types of structure than
sparsity is present it is sometimes possible to develop specialized algorithms. For so-called
Kalman-Yakubovich-Popov (KYP) SDPs this has been presented in e.g. [4, 5, 6, 13, 12].
When pure primal (resp. dual) IP methods are used, the dual (resp. primal) solution
(multipliers) is not obtained for free. Sometimes it is desirable to compute this solution.
Methods to recover the multipliers are implemented in the SDP solvers DSDP3 [2] and
also PENNON [10].
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9 Example

We consider the standard fourth-order (n = 4) two-mass-spring benchmark system

b(s)

a(s)
=

1

s4 + 2s2

described e.g. in [3, Example 3.3], that we would like to stabilize with a second-order
(m = 2) controller y(s)/x(s). Note that it can be proved that there exists no static or
first-order controller stabilizing this system. We consider continuous-time stability, i.e.

D =

[
0 1
1 0

]

and we choose
d(s) = (s+ 1)6

as a central polynomial.

Null-space extraction (4) is carried out with the numerically stable algorithm described
in [7], and we obtain

N0 =

[
06

1

]
and

N1 =



33.8333 0 −3.6667 0 1.5000 0 −1.3333
0 3.6667 0 −1.5000 0 1.3333 0

−3.6667 0 1.5000 0 −1.3333 0 1.1667
0 −1.5000 0 1.3333 0 −1.1667 0

1.5000 0 −1.3333 0 1.1667 0 1.0000
0 1.3333 0 −1.1667 0 −1.0000 0

−1.3333 0 1.1667 0 1.0000 0 0


as null-space basis matrices. Note that matrix N1 (after some row and column permuta-
tions) is Hankel.

Reduced dual LMI (5) reads

λ? = min f0 + f1z1

s.t. Z = G0 + z1G1 � 0.

where f0 = 2, f1 = −18.6667, G0 = N0 and G1 = N1 − 40.5000N0. This reduced dual
LMI features q = n −m − 1 = 1 variable, versus 2m + 1 + (m + n)(m + n + 1)/2 = 26
variables for the original primal LMI (1).

Solving the above LMI amounts to solving a mere generalized eigenvalue problem (stan-
dard linear algebra), and it is easy to show that z1 = 0 is the optimum value, hence
λ? = 2.
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The reduced primal LMI (6), dual to the above LMI, is given by

λ? = max f0 + trace(G0X)
s.t. trace(G1X) = f1

X � 0.

A trivial PSD matrix X satisyfing the linear constraints trace(G0X) = X77 = 0 and
trace(G1X) = −X66 = −18.6667 is

X =

 05

18.6667
0

 .

With this choice, we obtain the following matrices in linear system of equations (8):

A =



2 0 0 0 0
30 −12 2 4 0
30 −40 30 62 −24
2 −12 30 90 −92
0 0 2 34 −64
0 0 0 2 −12
0 0 0 0 0


, b =



2
−2
−2
−64
−88

−54.6667
0


.

Solving this system we obtain the second-order controller

y(s)

x(s)
=

1.0000 + 4.1185s− 10.5443s2

9.6276 + 6.1602s+ s2

stabilizing plant b(s)/a(s). Indeed, the roots of closed-loop denominator polynomial
c(s) = a(s)x(s) + b(s)y(s) are located at −0.1206± i0.7255, −0.6647± i0.4357, −0.7652
and −3.8246.

Now seeking a third-order (m = 3) controller with central polynomial

d(s) = (s+ 1)7

we obtain as explained in section 6 the trivial dual matrix

Z =

[
07

1

]

solving reduced dual LMI (5), instead of solving an original primal LMI (1) with 2m +
1 + (m+ n)(m+ n+ 1)/2 = 35 variables.

Any matrix X with zero last row and column and a PSD upper left block of dimension 7
works as a solution to reduced primal LMI (6). With the trivial choice

X = 08
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we obtain the following matrices in linear system (8):

A =



2 0 0 0 0 0 0
42 −14 2 0 4 0 0
70 −70 42 −14 86 −28 4
14 −42 70 −70 182 −154 86
0 2 −14 42 −98 154 −182
0 0 0 2 −14 46 −98
0 0 0 0 0 2 −14
0 0 0 0 0 0 0


, b =



2
−2

2
26

−156
−152
−48

0


.

The resulting third-order controller

y(s)

x(s)
=

1.0000 + 4.5781s+ 0.1094s2 − 1.9687s3

4.9688 + 8.0469s+ 4.5781s2 + s3

stabilizes plant b(s)/a(s) and the roots of closed-loop denominator polynomial c(s) =
a(s)x(s)+b(s)y(s) are located at −0.0869± i0.9962, −0.7799± i0.6259, −0.9222± i0.3866
and −1.0000.

10 Conclusion

In this note we have shown that, in the polynomial framework, the sufficient LMI fixed-
order controller design conditions of [9] have a specific structure that can be exploited
to reduce significantly the number of dual LMI decision variables. We use SDP duality
results described in [6, 12, 13] to come up with a reduced LMI where the number of
decision variables is equal to the difference between the open-loop plant order and the
desired controller order. Dedicated interior-point algorithms similar to those used for
solving KYP-SDP problems can then be applied. Controller parameters are retrieved
afterwards from primal multipliers by solving a standard linear system of equations.

As an obvious consequence, no LMI problem must be solved when designing a controller
whose order is equal to or greater than the order of the plant minus one. As with standard
pole placement, design merely amounts to solving a linear system of equations.

Another observation is that the computational effort increases when the order of the
controller to be designed decreases. This could be expected, since it is well-known that
PID or static output feedback controller design, when carried out systematically and
rigorously, can be very computationally demanding. Conversely, it is also known that in
the state-space framework, designing a stabilizing output feedback dynamical controller
boils down to resolving a convex LMI problem as soon as the controller has the same order
than the plant. As a conclusion, high computational load is not necessarily expected when
the number of controller parameters is large, but rather when a large number of plant
parameters are to be controlled with a small number of controller parameters.
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Finally, we are currently studying applications of the reduction technique to robust anal-
ysis and design problems in the scalar or matrix polynomial frameworks. For example, in
the case of polytopic or interval parametric uncertainty, it is expected that the particular
structure of the LMI conditions of [9], where a different Lyapunov certificate appears in
each vertex LMI condition, can be exploited to reduce significantly the computational
effort.

Acknowledgments

We are grateful to Lieven Vandenberghe for several enlighting discussions on semidefinite
programming. Didier Henrion acknowledges support from grant No. 102/02/0709 of the
Grant Agency of the Czech Republic, and project No. ME 698/2003 of the Ministry
of Education of the Czech Republic. This research was also supported by the Swedish
Research Council under contract No. 271-2000-770.

References

[1] V. Balakrishnan, L. Vandenberghe. Semidefinite Programming Duality and Linear
Time-Invariant Systems. IEEE Transactions on Automatic Control, Vol. 48, No. 1,
pp. 30–41, 2003.

[2] S. J. Benson, Y. Ye. DSDP3: dual-scaling algorithm for semidefinite programming.
Technical Report No. ANL/MCS-P851-1000, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, IL, 2001.

[3] P. Dorato. Analytic Feedback System Design: an Interpolation Approach.
Brooks/Cole, Pacific Grove, CA, 2000.

[4] A. Hansson, L. Vandenberghe. Efficient solution of linear matrix inequalities for
integral quadratic constraints. Proceedings of the IEEE Conference on Decision
and Control, Sydney, Australia, 2000.

[5] A. Hansson, L. Vandenberghe. A primal-dual potential reduction method for integral
quadratic constraints. Proceedings of the American Control Conference, Arlington,
Virginia, 2001.

[6] A. Hansson, L. Vandenberghe, V. Balakrishnan, R. Wallin, J. Gillberg. Efficient
solution of SDPs related to the KYP lemma. IMA Workshop on SDP and Robust
Optimization, University of Minnesota, Minneapolis, 2003.

[7] D. Henrion, M. Šebek. An Algorithm for Polynomial Matrix Factor Extraction.
International Journal of Control, Vol. 73, No. 8, 2000.

11



[8] D. Henrion. LMIs for Robust SPR Design. IEEE Transactions on Circuits and Sys-
tems, Part I, Vol. 49, No. 7, 2002.
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