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Finding largest small polygons with GloptiPoly
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Abstract A small polygon is a convex polygon of unit diameter. We are interested in small polygons which
have the largest area for a given number of vertices n. Many instances are already solved in the
literature, namely for all odd n, and for n = 4, 6 and 8. Thus, for even n ≥ 10, instances of
this problem remain open. Finding those largest small polygons can be formulated as nonconvex
quadratic programming problems which can challenge state-of-the-art global optimization algo-
rithms. We show that a recently developed technique for global polynomial optimization, based
on a semide�nite programming approach to the generalized problem of moments and implemented
in the public-domain Matlab package GloptiPoly, can successfully �nd largest small polygons for
n = 10 and n = 12. Therefore this signi�cantly improves existing results in the domain. When
coupled with accurate convex conic solvers, GloptiPoly can provide numerical guarantees of global
optimality, as well as rigorous guarantees relying on interval arithmetic.
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1. Introduction

The problem of �nding the largest small polygons was �rst studied by Reinhardt in 1922 [13].
Reinhardt solved the problem by proving that the solution corresponds to the regular polygons
but only when the number of vertices n is odd. He also solved the case n = 4 by proving that
a square with diagonal length equal to 1 is a solution. However, it exists an in�nity of other
di�erent solutions (it is just necessary that the two diagonals intersect with a right angle). The
hexagonal case n = 6 was solved numerically by Graham in 1975 [6]. Indeed, Graham studied
possible structures that the optimal solution must have. He introduced the diameter graph
of a polygon which is de�ned by the vertices of the polygon and by edges with length one (if
and only if the corresponding two vertices of the edge are at distance one). Using a result
due to Woodall [14], he proved that the diameter graph of the largest small polygons must
be connected, yielding 10 distinct possible con�gurations for n = 6. Discarding 9 of these 10
possibilities by using standard geometrical reasonings plus the fact that all the candidates must
have an area greater than the regular small hexagon, he determined the only possible diameter
graph con�guration which can provide a better solution. He solved this last case numerically,
yielding the largest small hexagon. Following the same principle, Audet et al. in 2002 found
the largest small octagon [4]. The case n = 8 is much more complicated than the case n = 6
because it generates 31 possible con�gurations and just a few of them can be easily discarded by
geometrical reasonings. Furthermore, for the remaining cases, Audet et al. had to solve di�cult
global optimization problems with 10 variables and about 20 constraints. These problems are
formulated as quadratic programs with quadratic constraints [4]. Audet et al. used for that a
global solver named QP [1]. Notice that optimal solutions for n = 6 and n = 8 are not the
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regular polygons [4, 6]. In 1975, Graham proposed a conjecture which is the following: when
n is even and n ≥ 4, the largest small polygon must have a diameter graph with a cycle with
n − 1 vertices and with an additional edge attached to a vertex of the cycle; this is true for
n = 4, 6 and also n = 8, see Figure 1. Therefore, this yields only one possible diameter graph
con�guration that must have the optimal solution. In 2007, Foster and Szabo proved Graham's
conjecture [5]. Thus to solve the following open cases n ≥ 10, it is just necessary to solve one
global optimization problem de�ned by the con�guration of the diameter graph with a cycle
with n − 1 vertices and an additional pending edge. In order to have an overview of these
subjects, refer to [2, 3].

2. Nonconvex quadratic programming

As mentioned above, for an even n ≥ 4, �nding the largest small polygon with n vertices
amounts to solving only one global optimization problem. All these problems depending on
n can be formulated as nonconvex quadratic programs under quadratic constraints [4]. For
illustration, here is the problem corresponding to the case n = 8 (the de�nitions of the variables
are given in Figure 1):

•

• ••

••

••

v8 = (0, 0)

v1 = (x1 − x2, y1 − y2)

v2 = (−x1 + x3 − x5,
y1 − y3 + y5)

v3 = (−x1, y1)

v4 = (0, 1)

v5 = (x1, y1)

v6 = (x1 − x2 + x4,
y1 − y2 + y4)

v7 = (x3 − x1, y1 − y3)

Figure 1. Case of n = 8 vertices. De�nition of variables following Graham's conjecture.



max
x,y

1
2
{(x2 + x3 − 4x1)y1 + (3x1 − 2x3 + x5)y2 + (3x1 − 2x2 + x4)y3

+(x3 − 2x1)y4 + (x2 − 2x1)y5}+ x1

s.t. ‖vi − vj‖ ≤ 1, ∀(i, j) ∈ {1, · · · , 8}, i 6= j
‖v2 − v6‖ = 1
x2

i + y2
i = 1 i = 1, 2, 3, 4, 5

x2 − x3 ≥ 0 y ≥ 0
0 ≤ x1 ≤ 0.5 0 ≤ xi ≤ 1, i = 2, 3, 4, 5.

(1)

Without loss of generality we can insert the additional constraint x2 ≥ x3 which eliminates
a symmetry axis. In program (1), all the constraints are quadratic. The quadratic objective
function corresponds to the computation of the area of the octagon following Graham's diameter
graph con�guration. This formulation is easy to extend to the cases n ≥ 10 with n even.

3. GloptiPoly

In 2000, Lasserre proposed to reformulate nonconvex polynomial optimization problems (POPs)
as linear moment problems, in turn formulated as linear semide�nite programming (SDP) prob-
lems [10]. Using results on �at extensions of moment matrices and representations of polyno-
mials positive on semialgebraic sets, it was shown that under some relatively mild assump-
tions, solving nonconvex POPs amounts to solving a su�ciently large linear hence convex SDP
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problem. In practice, a hierarchy of embedded SDP relaxations of increasing size are solved
gradually. Convergence and hence global optimality can be guaranteed by examining a certain
rank pattern in the moment matrix, a simple task of numerical linear algebra. A user-friendly
Matlab interface called GloptiPoly was designed in 2002 to transform a given POP into an
SDP relaxation of given size in the hierarchy, and then to call SeDuMi, a general-purpose conic
solver [7]. A new version 3 was released in 2007 to address generalized problem of moments,
including POPs but also many other decision problems. The interface was also extended to
other public-domain conic solvers [8]. Almost a decade after the initial spark [10], Lasserre
summarized the theoretical and practical sides of the approach in a monograph [11].

4. Numerical experiments

We applied GloptiPoly 3 and SeDuMi 1.1R3 to solve the quadratic problem in the cases n = 8
and 10. In order to obtain accurate solutions, we let SeDuMi minimize the duality gap as much
as possible. We also tightened the tolerance parameters used by GloptiPoly to detect global
optimality and extract globally optimal solutions. We used a 32 bit desktop personal computer
with a standard con�guration.

For the case n = 8 we obtain the solution (with 8 signi�cant digits) x1 = 0.26214172,
x2 = 0.67123417, x3 = 0.67123381, x4 = 0.90909242, x5 = 0.90909213 whose global optimality
is guaranteed numerically (the moment matrix has approximately rank one) at the second SDP
relaxation in the hierarchy. This SDP problem is solved by SeDuMi in less than 5 seconds. The
objective function of the SDP relaxation is equal to 0.72686849, and this is an upper bound on
the exact global optimum. The quadratic objective function evaluated at the above solution is
the same to 11 signi�cant digits. Symmetry considerations indicate that x2 = x3 and x4 = x5

at the optimum, and we see that the above solution achieves this to 5 digits for x2 and to 6
digits for x4.

These results can be rigorously guaranteed by using Jansson's VSDP package which uses SDP
jointly with interval arithmetic [9]. The solution of an SDP problem can be guaranteed at the
price of solving a certain number of SDP problems of the same size. In our case, VSDP solved 8
instances of the second SDP relaxation to provide the guaranteed lower bound 0.72686845 and
guaranteed upper bound 0.72686849 on the objective function, namely the area of the octagon.

In the case n = 10, we obtain the solution x1 = 0.21101191, x2 = 0.54864468, x3 =
0.54864311, x4 = 0.78292524, x5 = 0.78292347, x6 = 0.94529290, x7 = 0.94529183 whose
global optimality is guaranteed numerically at the second SDP relaxation. This SDP problem
is solved by SeDuMi in less than 5 minutes. The objective function of the SDP relaxation, an
upper bound on the exact global optimum, is equal to 0.74913736. The quadratic objective
function evaluated at the above solution is the same to 10 signi�cant digits.

For n = 12, we obtain the following solution without using the rigorous method of SDP:
x1 = 0.17616131, x2 = 0.46150224, x3 = 0.46150519, x4 = 0.67623091, x5 = 0.67623301,
x6 = 0.85320300, x7 = 0.85320328, x8 = 0.96231370, x9 = 0.96231344. This SDP problem is
solved within 1h06. The objective function of the SDP relaxation, an upper bound on the exact
global optimum, is equal to 0.76072988. The solutions for the optimal decagon and dodecagon
are drawn in Figure 2.

5. Conclusion

GloptiPoly can be e�ciently used to �nd some largest small polygons with an even number of
vertices. The case n = 8 is most e�ciently solved than in [4]: (i) the accuracy on the value of
the area is now 10−10 in place of 10−5 and (ii) the required CPU time is about 5 seconds in
place of 100 hours. Furthermore, the next open instance for n = 10 is solved using GloptiPoly
in only 5 minutes with always an accuracy of 10−10. These two results are obtained with a
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Figure 2. Largest Small Decagon and Dodecagon.

certi�ed guarantee on 10 digits. For the case n = 12, GloptiPoly found the global solution,
but for the moment without a certi�ed guarantee. In future works, we have to certi�ed and
guarantee the solution obtained for the case n = 12. It seems to be also possible to solve the
next open case n = 14. Note that all the found largest small polygons with an even number n
of vertices (from n = 4 to 12) own a symmetry axis on the pending edge of their corresponding
optimal diameter graph con�gurations.
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