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Abstract— We consider the class of nonlinear optimal con-
trol problems with all data (differential equation, state and
control constraints, cost) being polynomials. We provide a
simple hierarchy of LMI-relaxations whose optimal values form
a nondecreasing sequence of lower bounds on the optimal
value. Preliminary results show that good approximations are
obtained with few moments.

I. INTRODUCTION

In general, solving a general nonlinear optimal control
problem (OCP) is a difficult challenge, despite powerfull
theoretical tools are available, e.g. the maximum principle
and Hamilton-Jacobi-Bellman optimality equation. However
there exist many numerical methods to approximate the
solution of a given optimal control problem. For instance,
Multiple shooting techniques which solve two-point bound-
ary value problems as decribed in e.g. [17], [7], or direct
methods, as in e.g. [18], [5], [6], which for instance, use
descent algorithms, among others.

Contribution. In this paper, we consider the particular
class of nonlinear OCPs for which all data describing the
problem (dynamics, state and control constraints) are polyno-
mials. We propose a completely different approach to provide
a good approximation of (only) the optimal value of the
OCP, via a sequence of increasing lower bounds. As such,
it could be seen as a complement to the above shooting or
direct methods which provide an upper bound, and when the
sequence of lower bounds converges to the optimal value, a
test of their efficiency.

We first adopt an infinite-dimensional linear programming
(LP) formulation based on the Hamilton-Jacobi-Bellman
equation, as developed in e.g. Hernandez-Hernandez et al.
[11]. We then follow a numerical approximation scheme (a
relaxation of the original LP) in the vein of the general frame-
work developed in Hernandez and Lasserre [10] for infinite-
dimensional linear programs. We here exploit the fact that all
data are polynomials to provide a hierarchy of semidefinite
programming (SDP) (or, LMI) relaxations, whose optimal
values form a monotone nondecreasing sequence of lower
bounds on the optimal value of the OCP. The first numerical
experiments show that good approximations are obtained
early in the hierarchy, i.e., with few moments, confirming
the efficiency of SDP-relaxations of the same vein developed
for other applications; see e.g. Lasserre [12], [13] in global
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optimization and probability, Henrion and Lasserre [8] for
robust control problems, among others.

II. GENERAL FRAMEWORK

Let R[x] = [x1, . . . xn] (resp. R[t, x, u] =
R[t, x1, . . . xn, u1, . . . , um]) denote the ring of polynomials
in the variables x (resp. in the variables t, x, u). Next, with
T > 0, let:

- X, XT ⊂ Rn and U ⊂ Rm be semi-algebraic sets.
- U be the set of measurable functions u : [0, T ] → U .
- h ∈ R[t, x, u], H ∈ R[x]
- f : R × Rn × Rm → Rn a polynomial map, i.e. fk ∈

R[t, x, u] for all k = 1, . . . , n.

Let x0 ∈ X and consider the following OCP

J∗(0, x0) := inf
u∈U

J(0, x0,u), (1)

where

J(0, x0,u) =
∫ T

0
h(s, x(s), u(s)) ds + H(x(T ))

ẋ(s) = f(s, x(s), u(s)), s ∈ [0, T )
(x(s), u(s)) ∈ X × U s ∈ [0, T )

x(T ) ∈ XT ,
(2)

and with initial condition x(0) = x0 ∈ X .
Note that a particular OCP is the minimal-time controlla-

bility from x0 to XT , by letting h ≡ 1, H ≡ 0, i.e.

T ∗ = min
u∈U

{ T | under (2) and x(0) = x0 ∈ X .} (3)

The optimal value T ∗ is the first hitting time of the set XT .

A. A linear programming formulation

With a stochastic or deterministic OCP, one may asso-
ciate an abstract infinite-dimensional linear programming
(LP) problem P together with a dual P∗; see for instance
Hernandez-lerma and Lasserre [9] for discrete-time Markov
control problems, and Hernandez et al. [11] for deterministic
optimal control problems, as well as the many references
therein.

Typically, the primal problem P is related with Hamilton-
Jacobi-Bellman optimality conditions whereas its dual P∗ is
defined in terms of occupation measures (and their associated
invariance conditions for infinite horizon problems). One
always has supP ≤ inf P∗ ≤ J∗(0, x0), where J∗(0, x0)
is the optimal value of the OCP. Under suitable assumptions
one may sometimes prove that supP = minP∗ = J∗(0, x0),
i.e., both optimal values of P and P∗ coincide with the
optimal value J∗(0, x0) of the OCP, and P∗ has an optimal



solution; see e.g. the OCP analyzed in [11]. However, in
their full generality, both linear programs P and P∗ are rather
abstract as they are not directly solvable as finite dimensional
LPs. Then, for a numerical approximation of inf P∗ or supP,
one may invoke approximation schemes as defined in e.g.
Hernandez-Lerma and Lasserre [10].

More precisely, let us follow Hernandez et al. [11] (where
X = XT = Rn). With X a metric space, and C(X ) the
space of real-valued bounded continuous functions on X , let
b : X → R be a continuous function such that b ≥ 1. Then
let Cb(X ) be the Banach space of continuous functions on
X , with norm ‖f‖b := supx∈X |f(x)|/b(x), with topological
dual Cb(X )∗. On the other hand, let Mb(X ) be the Banach
space of finite signed Borel measures µ on X , with finite
norm ‖µ‖b :=

∫
b d|µ|, where |µ| denotes the total variation

of µ. Obviously, Mb(X ) ⊂ Cb(X )∗.
Let U ⊂ Rm be the control set, and let Σ := [0, T ]×X ,

S := Σ× U . The set of controls U is the set of measurable
functions u : [0, T ] → U . Let C1

b (Σ) be the Banach space
of functions ϕ ∈ Cb(Σ) with partial derivatives ∂ϕ/∂xj in
Cb(Σ) for all j = 1, . . . , n.

With u ∈ U , let A : C1
b (Σ) → Cb(Σ) be the mapping

ϕ 7→ Aϕ(t, x, u) :=
∂ϕ

∂t
(t, x) + 〈f(t, x, u),∇xϕ(t, x)〉,

(4)
and let L : C1

b (Σ) → Cb(S)× Cb(Rn) be the mapping

ϕ 7→ Lϕ := (−Aϕ, ϕT ),

where ϕT (x) := ϕ(T, x), for all x ∈ X . (Here we assume
that the bounding function b is such that 〈∇xϕ, f〉 ∈ Cb(S)
for all ϕ ∈ C1

b (Σ).)
Similarly, let L∗ : Cb(S)∗ × Cb(Rn)∗ → C1

b (Σ)∗ is the
adjoint mapping of L, defined by

〈(µ, ν),Lϕ〉 = 〈L∗(µ, ν), ϕ〉,

for all ((µ, ν), ϕ) ∈ Cb(S)∗×Cb(Rn)∗×C1
b (Σ). A function

ϕ : [0, T ]× Rn → R, is a solution of the Hamilton-Jacobi-
Bellman optimality equation if

inf
u∈U

{Aϕ(s, x, u) + h(s, x, u)} = 0, (s, x) ∈ [0, T )×X,

(5)
with boundary condition ϕT (x) (= ϕ(T, x)) = H(x), for all
x ∈ XT . And, a function ϕ ∈ C1

b (Σ) is said to be a smooth
subsolution of the Hamilton-Jacobi-Bellman equation (5) if

Aϕ + h ≥ 0 on [0, T )×X × U,

and ϕ(T, x) ≤ H(x), for all x ∈ XT . Then, consider the
infinite-dimensional linear program P

P : sup
ϕ∈C1

b (Σ)

{〈δ(0,x0), ϕ〉 | Lϕ ≤ (h, H)}, (6)

and its dual

P∗ : inf
0≤(µ,ν)∈∆

{〈(µ, ν), (h, H)〉 | L∗(µ, ν) = δ(0,x0)}.
(7)

(where ∆ := Cb(S)∗ × Cb(XT )∗).

Note that the feasible solutions ϕ of P are precisely
smooth subsolutions of (5).

As already mentioned, and under some suitable assump-
tions, one may prove that supP = minP∗ = J∗(0, x0); see
e.g. [11, Theor. 5.1] for the case X = XT = Rn.

In particular, the mapping L is continuous with respect to
the weak topologies σ(Cb(S)×Cb(Rn), Cb(S)∗×Cb(Rn)∗)
and σ(C1

b (Σ), C1
b (Σ)∗) if L∗(∆) ⊂ C1

b (Σ)∗.
Remark 2.1: The spaces C1

b (S)∗ and Cb(XT )∗ are useful,
e.g. to use the celebrated Banach-Alaoglu theorem on the
weak* compactness of their unit ball, and show supP =
minP∗ as in [11], but not very practical. Therefore, with
∆0 := Mb(S)×Mb(XT ), consider instead the stronger dual

P̂∗ : inf
0≤(µ,ν)∈∆0

{〈(µ, ν), (h, H)〉 | L∗(µ, ν) = δ(0,x0)}
(8)

of P, obtained from P∗ by replacing the Banach spaces
C1

b (S)∗ and Cb(XT )∗, by Mb(S) ⊂ C1
b (S)∗ and Mb(XT ) ⊂

Cb(XT )∗, respectively. Obviously, we have

supP ≤ inf P∗ ≤ inf P̂∗ ≤ J(0, x0).

And so, inf P∗ = J(0, x0), whenever sup P = J(0, x0).
The dual P̂∗ is in fact more practical to work with, as the

elements of Mb(S) (or Mb(XT )) are objects with a physical
meaning. In fact, as we shall next see, the dual P̂∗ has a nice
and simple interpretation in terms of occupation measures of
the trajectories (s, x(s), u(s)) of the OCP (1)-(2).

B. The linear pogram P̂∗ and occupation measures

Given an admissible control u = {u(t), 0 ≤ t < T} for
the OCP (1)-(2), introduce the probability measure νu on
Rn, and the measure µu on [0, T ]× Rn × Rm, defined by

νu(B) := IB [x(T )], B ∈ Bn (9)

µu(A×B) :=
∫

[0,T ]∩A

IB [(x(s), u(s))] ds, (10)

for all (A,B) ∈ A×Bnm, and where Bn (resp. Bnm) denotes
the usual Borel σ-algebra associated with Rn (resp. Rn ×
Rm), and A the Borel σ-algebra of [0, T ], and IB(•) the
indicator function of the set B.)

The measure µu is called the occupation measure of the
state-action (deterministic) process (s, x(s), u(s)) up to time
T , whereas νu is the occupation measure of the state x(T )
at time T .

Remark 2.2: As u ∈ U is admissible, it follows that νu

is a probability measure supported on XT , whereas µu is
supported on [0, T ] × X × U . Conversely, let u ∈ U be a
control, and let µu be defined as in (10), where (x(s), u(s))
satisfies the o.d.e. (2) (but not necessarily the state and
control constraints). If µu has its support on [0, T ]×X×U ,
then (x(s), u(s)) ∈ X × U for almost all s ∈ [0, T ). In
addition, if νu has its support in XT , then x(T ) ∈ XT , and
so, u is an admissible control. Indeed, in view of (10),

T =
∫ T

0

IX×U [(x(s), u(s))] ds

⇒ IX×U [(x(s), u(s))] = 1 for a.a. s ∈ [0, T ),



and so (x(s), u(s)) ∈ X × U for almost all s ∈ [0, T ).
Then, observe that the criterion in (1) now reads

J(0, x0,u) =
∫

H dνu +
∫

h dµu = 〈(µu, νu), (h, H)〉,

and, in addition, one may rewrite (2) as∫
gT dνu − g(0, x0) =

∫
〈∇xg, f〉 dµu (11)

for all g ∈ C1
b (Σ) (and where gT (x) ≡ g(T, x) for all x ∈

Rn). In other words,

L∗(µu, νu) = δ(0,x0),

that is, (µu, νu) is a feasible solution of P̂∗ defined in (8),
with value J(0, x0,u).

Hence, if the linear program P is a rephrasing of the OCP
(1)-(2) in terms of the Hamilton-Jacobi-Bellman equation, its
LP dual P̂∗ is a rephrasing of the OCP in terms of occupation
measures of its trajectories (s, x(s), u(s)). These two LPs are
the deterministic analogues of the linear programs described
in Hernandez and Lasserre [9, §6] for discrete time Markov
control problems.

C. SDP-relaxations of P̂∗

The linear program P̂∗ is infinite-dimensional, and so, not
tractable as it stands. Therefore, we first provide a relaxation
scheme that provides a sequence of approximating LPs P̂∗r ,
each with finitely many constraints.

Let D1 ⊂ D2 . . . ⊂ C1
b (Σ) be an increasing sequence

of finite spaces of functions. We next define the following
infinite-dimensional linear programming problem

P̂∗r :


inf

ν,µ≥0

∫
H dν +

∫
h dµ

s.t.
∫

gT dν − g(x0) =
∫
〈∇xg, f〉 dµ, ∀g ∈ Dr

(µ, ν) ∈ Mb(S)×Mb(XT )
(12)

whose optimal value is denoted by inf P̂∗r .
Recall that the constraint∫

gT dν − g(x0) =
∫
〈∇xg, f〉 dµ, g ∈ Dr

can be equivalently written

〈g,L∗(µ, ν)〉 = 〈g, δ{0,x0}〉, g ∈ Dr.

Therefore, the linear program P̂∗r is a relaxation of P̂∗, and
so inf P̂∗r ↑ as r increases, and P̂∗r is a relaxation of (1) for
all r ∈ N, that is, inf P̂∗r ≤ J∗(0, x0) for all r.

However, if P̂∗r has now only finitely many (linear)
constraints, it is still an infinite-dimensional LP. We next
use the fact that all defining functions of the OCP (1) are
polynomials, to provide a sequence of (finite dimensional)
semidefinite programs (SDP), which are all relaxations of
the linear program P̂∗r . To do this, we will take for Dr a set
of polynomials of total degree bounded by r

Recall that we asssume that all functions h, H, f in the
description of the OCP (2) are polynomials, and the sets
X, U, XT are semi-algebraic sets.

Observe that when g ∈ R[t, x], then (11) defines countably
many linear equalities linking the moments of µu and
νu, because if g is a polynomial then so are ∂g/∂t and
∂g/∂xk, for all k, and so is 〈∇xg, f〉. Moreover, the criterion
J(0, x0,u) is also a linear combination of the moments of
µu and νu.

So let y = {yα}α∈Nn (resp. z = {zpαβ}p∈N,α∈Nn,β∈Nm )
be a sequence indexed in the canonical basis {xα} of R[x]
(resp. {tpxαuβ} of R[t, x, u]).

Next, let Ly : R[x] → R be the linear functional defined
by

h(:=
∑

α∈Nn

hαxα) 7→ Ly(h) :=
∑

α∈Nn

hαyα,

and similarly, let Lz : R[t, x, u] → R be the linear functional
be defined by

h 7→ Lz(h) :=
∑

p∈N,α∈Nn,β∈Nm

hpαβ zpαβ ,

whenever h(t, x, u) =
∑

p∈N,α∈Nn,β∈Nm hpαβ tpxαuβ).
Then for g := tpxγ , p ∈ N, γ ∈ Nn, (11) reads

Ly(gT )− Lz(〈∇xg, f〉) =
{

xγ
0 if p = 0

0 if p ≥ 1 ,

or, equivalently,

T pyγ − 〈Apγ , z〉 =
{

xγ
0 if p = 0

0 if p ≥ 1 ,

for some linear functional Apγ (identified with an infinite
vector with finitely many non zero coefficients in the canon-
ical basis {tpxαuβ}).

Therefore, if we take for Dr, the monomials of total
degree less than r, in the canonical basis {tpxγ}, the linear
program P̂∗r is entirely described only in terms of finitely
many moments of the measures µ and ν.

Hence, with such a finite set Dr, the linear program P̂r

has only finitely many constraints and variables. However,
it remains to express conditions on these variables y, z to
be moments of measures with support in XT and [0, T ] ×
X×U , respectively. This is where we now invoke powerfull
results in the theory of moments, on the so-called K-moment
problem.

If XT ⊂ Rn is a semi-algebraic set defined by (finitely
many) polynomials inequalities θj(x) ≥ 0, j ∈ JT then, a
sequence y has a representing measure ν supported on X ,
i.e.,

yα =
∫

XT

xαdν, ∀α ∈ Nn,

only if

Ly(h2) ≥ 0; Ly(θjh
2) ≥ 0, ∀h ∈ R[x], j ∈ JT .

Notice that, if XT = {0} (as in minimum time OCPs), then
it simplifies to y0 = 1 and yα = 0, for all 0 6= α ∈ Nn.

Similarly, let X ⊂ Rn (resp. U ⊂ Rm) be a semi-algebraic
set defined by polynomial inequalities vj(x) ≥ 0, j ∈ J
(resp. wk(u) ≥ 0, k ∈ K). Then the sequence z = {zpαβ}



has a representing measure µ on [0, T ] × X × U only if
Lz(h2) ≥ 0, and

Lz(vjh
2) ≥ 0; Lz(wkh2) ≥ 0; Lz(t(T − t)h2) ≥ 0,

for all h ∈ R[t, x, u], and j ∈ JT , k ∈ K. If XT , and
X ×U are compact then under relatively weak assumptions
the conditions are also sufficient (by using a result of Putinar
in [14]). Moreover, if one already knows that z has a
representing measure µ, then under the same compactness
assumption, to ensure that µ has its support in [0, T ]×X×U ,
it is enough to state conditions on the marginal {zα0} and
{z0β} of {zαβ}, that is Lz(vjh

2) ≥ 0, ∀h ∈ R[x],j ∈ JT ;
Lz(wkh2) ≥ 0, ∀h ∈ R[u], k ∈ K, and Lz(t(T − t)h2) ≥
0, ∀h ∈ R[t].

The important property of all the above conditions, is that
when stated for all polynomials h of degree less than say r,
they translate into LMI conditions on the y and z, via moment
and localizing matrices associated with y, z, θj , vjwk, and as
defined in e.g. Lasserre [10].

To summarize, let D•r ⊂ R[•] be the monomials of the
canonical basis of the space of polynomials in the variables
•, and of total degree less than r. For a polynomial θj , and
depending on its parity, define deg θj = 2r(θj) or 2r(θj)−1;
and similarly for the polynomials {vj} and {wk}. Finally, let
deg f = 2r0 or 2r0− 1. Then, we end up with the sequence
of LMI-relaxations

Qr :



inf
y,z

Lz(h) + Ly(H)

Ly(gT )− g(x0)− Lz(〈∇xg, f〉) = 0, ∀g ∈ Dtx
r−r0

Lz(h2) ≥ 0, ∀h ∈ Dtxu
r ; Ly(h2) ≥ 0, ∀h ∈ Dx

r

Ly(h2θj) ≥ 0, ∀h ∈ Dx
r−r(θj)

, j ∈ JT

Lz(h2vj) ≥ 0, ∀h ∈ Dx
r−r(vj)

, j ∈ J

Lz(h2wk) ≥ 0, ∀h ∈ Du
r−r(wk), k ∈ K

Lz(h2t(T − t)) ≥ 0, ∀h ∈ Dt
r−1

z0 = T,
(13)

whose optimal value is denoted by inf Qr. Obviously we
have inf Qr ≤ inf P̂∗r ≤ J∗(0, x0), for all r ∈ N.

For the minimum time OCP (3), we need adapt the
notation. T is now a variable and XT = Ω ⊂ Rn a fixed
semi-algebraic set. That is, given a control u = u(t) ∈ U ,
let Tu := inf{t ≥ 0 | x(t) ∈ Ω}. Of course we also must
have X ⊂ Rn \ Ω. Then the SDP-relaxation Qr now reads

Qr :



inf
y,z

z0

Ly(gT )− g(x0)− Lz(〈∇xg, f〉) = 0, ∀g ∈ Dtx
r−r0

Lz(h2) ≥ 0, ∀h ∈ Dtxu
r ; Ly(h2) ≥ 0, ∀h ∈ Dx

r

Ly(h2θj) ≥ 0, ∀h ∈ Dx
r−r(θj)

, j ∈ JT

Lz(h2vj) ≥ 0, ∀h ∈ Dx
r−r(vj)

, j ∈ J

Lz(h2wk) ≥ 0, ∀h ∈ Du
r−r(wk), k ∈ K

Lz(h2t(T − t)) ≥ 0, ∀h ∈ Dt
r−1

(14)
and similarly, inf Qr ≤ inf P̂∗r ≤ T ∗, for all r ∈ N.

For a time-homogeneous OCP, f, h do not depend on t, and
so, simplifications occur. The measure µu is now supported
on X × U instead of [0, T ] × X × U , and the functions
ϕ in the definition of the linear program P in (6) are now

TABLE I
LMI-RELAXATIONS: inf Qr

r 2 3 4 5 6 7
inf Qr 1.0703 1.7100 2.5951 3.2026 3.3888 3.4350

% error 68 % 50,4% 24,7% 7,16% 1,76% 0,42%

in C1
b (X) instead of C1

b ([0, T ] ×X). And for instance, the
SDP-relaxation Qr defined in (13) now reads

Qr :



inf
y,z

Lz(h) + Ly(H)

Ly(g)− g(x0)− Lz(〈∇xg, f〉) = 0, ∀g ∈ Dx
r−r0

Lz(h2) ≥ 0, ∀h ∈ Dxu
r ; Ly(h2) ≥ 0, ∀h ∈ Dx

r

Ly(h2θj) ≥ 0, ∀h ∈ Dx
r−r(θj)

, j ∈ JT

Lz(h2vj) ≥ 0, ∀h ∈ Dx
r−r(vj)

, j ∈ J

Lz(h2wk) ≥ 0, ∀h ∈ Du
r−r(wk), k ∈ K

Lz(h2t(T − t)) ≥ 0, ∀h ∈ Dt
r−1

z0 = T.
(15)

So, the above defined LMI-relaxations Qr contain moments
y and z, up to order 2r only. In the next section, we
consider two applications of this approach to nonlinear (time-
homogeneous) control problems in Sections III-A and III-B.

III. ILLUSTRATIVE EXAMPLES

We here consider minimum time OCPs (3), that is, we
want to approximate the minimum time to steer a given
initial condition to the the origin. We have tested the above
methodology on two test OCPs, the double and Brockett
integrators, because the associated optimal value T ∗ can be
calculated exactly.

A. The double integrator

Consider the double integrator system in R2:

ẋ1(t) = x2(t)
ẋ2(t) = u(t) (16)

where x = (x1, x2) is the state and the control u = u(t) ∈ U ,
satisfies the constraint |u(t)| ≤ 1, for all t ≥ 0.

1) Exact computation: For this very simple system the
Hamilton-Jacobi-Bellman equation can been solved explic-
itly, as in e.g. [3]. Denoting T (x1, x2) the minimal time to
reach the origin from (x1, x2), we have:

T (x1, x2) =

 2
√

x + y2

2 + y if x ≥ −y2

2 sign(y)

2
√

x + y2

2 − y if x < −y2

2 sign(y)
(17)

In this case, and with the notation of Section II, we have
X = R2, and Xτ = {(0, 0)}. As the dynamics is linear, the
LMI-relaxation Qr contains moments of order 2r only.

2) Numerical approximation: Table I displays the optimal
values inf Qr, r = 1, . . . , 7, for the initial condition x0 =
(1, 1). The optimal value is T ∗ = 1 +

√
6 ≈ 3.4495.

A very good approximation of T ∗ with less than 2%
relative error, is obtained with moments or order 12 only.



B. The Brockett integrator

Consider the so-called Brockett system in R3

ẋ1(t) = u1(t)
ẋ2(t) = u2(t)
ẋ3(t) = u1(t)x2(t)− u2(t)x1(t),

(18)

where x = (x1, x2, x3), and the control u = (u1(t), u2(t)) ∈
U , satisfies the constraint

u1(t)2 + u2(t)2 ≤ 1, ∀t ≥ 0. (19)

So, in this case, we have X = R3, Xτ = {(0, 0, 0)}.
1) Exact computation: Let T (x) be the minimum time

needed to steer an initial condition x ∈ R3 to the origin. We
recall the following result of [1] (in fact given for equivalent
(reachability) OCP of steering the origin to a given point x).

Proposition 3.1: Consider the minimum time OCP for the
system (18) with control constraint (19). The minimum time
T (x) needed to steer the origin to a point x = (x1, x2, x3) ∈
R3 is given by

T (x1, x2, x3) =
θ
√

x2
1 + x2

2 + 2|x3|√
θ + sin2 θ − sin θ cos θ

(20)

where θ = θ(x1, x2, x3) is the unique solution in [0, π) of

θ − sin θ cos θ

sin2 θ
(x2

1 + x2
2) = 2|x3|. (21)

Moreover, the function T is continuous on R3, and is analytic
outside the line x1 = x2 = 0.

Remark 3.2: Along the line x1 = x2 = 0, one has

T (0, 0, x3) =
√

2π|x3|.

The singular set of the function T , i.e. the set where T is
not C1, is the line x1 = x2 = 0 in R3. More precisely, the
gradients ∂T/∂xi, i = 1, 2, are discontinuous at every point
(0, 0, x3), x3 6= 0. For the interested reader, the level sets
{(x1, x2, x3) ∈ R3 | T (x1, x2, x3) = r}, with r > 0, are
displayed in Prieur and Trélat [16].

2) Numerical approximation: Recall that inf Qr ↑ as r
increases, i.e., the more moments we consider, the closer to
the exact value we get. For instance, with the initial condition
x0 = (1, 1, 1), one has T ∗ = 1.8257, and the first four LMI-
relaxations Qr, r = 1, 2, 3, give the following results:

T2 = 1.4462; T3 = 1.5892; T4 = 1.7476,

and so, with moments of order 8 only, the relative error is
4.2%. With the LMI solver that we used, we have encoun-
tered memory space problems at the fifth LMI-relaxation,
and so we display results only for the first four LMI-
relaxations.

In Table II we have displayed the relative error 1 −
inf Qr/T ∗, r ≤ 4, for 16 different values of the initial
state x(0) = x0, in fact, all 16 combinations of x01 = 0,
x02 = 0, 2/3, 4/3, 2, and x03 = 0, 2/3, 4/3, 2. So, the
entry (2, 3) of Table II for the second LMI-relaxation, is
1− inf Q2/T ∗ for the initial condition x0 = (0, 2/3, 4/3).

Notice that the upper triangular part (i.e., when both
fist coordinates x02, x03 of the initial condition are away

TABLE II
LMI-RELAXATIONS: 1− inf Qr/T ∗

Second LMI-relaxation: r=2
0% 0% 0% 0%

98.6% 56% 14% 3%
97.4% 69% 33% 11%
97.4% 75% 45% 21%

Third LMI-relaxation: r=3
0% 0% 0% 0%

89% 47% 9% 1%
83% 58% 23% 5%
82% 62% 34% 11%
Fourth LMI-relaxation: r=4

0% 0% 0% 0%
71% 33% 2% 0%
61% 40% 11% 1%
58% 42% 9% 2%

from zero) displays very good approximations with very few
moments. In addition, the further the coordinates from zero,
the best.

The regularity property of the minimal-time function
seems to be an important topic of further investigation.
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