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Abstract—A systematic process for eliciting safety trigger
conditions is presented. Starting from a risk analysis of the
monitored system, critical transitions to catastrophic system
states are identified and handled in order to specify safety
margins on them. The conditions for existence of such safety
margins are given and an alternative solution is proposed if
no safety margin can be defined. The proposed process is
illustrated on a robotic rollator.
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I. INTRODUCTION

Autonomous systems have to cope with various execution
environments while guaranteeing safety, and in particular
when they interact with humans, as is the case for robotic
systems. These systems are often critical since their failure
can lead to human injury or even death, or large financial
losses. However, such systems are difficult to validate due to
their high complexity and the fact that they operate within
complex, variable and uncertain environments in which it is
difficult to predict all possible system behaviors. Therefore,
there has been considerable interest in making such systems
safe [1], [2].

Safety can be defined in absolute terms as “the absence
of catastrophic consequences on the user(s) and the envi-
ronment” [3]. However, the notion of “zero risk” is utopian
since systems can and do fail during execution. The IEC
61508 standard recognizes this and defines safety as “the
absence of unacceptable risk” [4].

To obtain systems that fulfill their mission or avoid
catastrophic failures, despite the presence of faults, a com-
bination of several methods can be used [3], which are:
fault prevention, fault tolerance, fault removal and fault
forecasting. In the context of safety, a popular form of fault
tolerance is safety monitoring through which the functional
system is continuously monitored and forced to a safe
state should some anomalous behavior be detected. Safety
monitors appear in the literature under many different terms,
such as: safety manager [5], autonomous safety system [6],
checker [7], guardian agent [8], safety bag [9], or diverse

monitor [4]. The latter IEC 61508 standard [4], distinguishes
two monitoring approaches: “(1) the monitor and the mon-
itored function in the same computer, with some guarantee
of independence between them; and (2) the monitor and the
monitored function in separate computers.” In the latter case,
the monitor is called a diverse monitor1, whose aim is to
“protect against residual specification and implementation
faults in software which adversely affect safety”. For this
very reason, we are particularly interested in the latter type
of external safety monitor.

Thus, a safety monitor observes the behavior of the
functional system and aims to ensure that it respects a set
of safety constraints. It must be able to identify system
states in which it can trigger remedial actions to prevent the
occurrence of hazardous situations, i.e., situations in which
people, property or the environment are exposed to one or
more hazards [10].

In this paper, we introduce the concept of warning states,
in which associated remedial actions, or safety actions, can
be taken. The set of warning states represents the safety
margin between nominal safe states and catastrophic states,
i.e., those corresponding to hazardous situations.

The method for defining such warning states is not a trivial
task. The method must be able to propose an alternative
solution if a safety margin cannot be defined to handle
a given safety constraint. However, to the best of our
knowledge, there has been little research on this issue.

In this paper, we present a systematic process to elicit
the set of warning states. The process can be summarized
as follows: first, we extract sufficient conditions to avoid
hazardous situations (we refer to these as safety conditions)
using environmental quantities (we refer to these as safety-
relevant variables) from a list a major risks resulting from
a HAZOP/UML risk analysis. Second, for each safety con-
dition, we propose a methodology to refine it and define,
if possible, a safety margin on each safety-relevant variable,
and thereby, the set of warning states. If a safety margin can-

1In the 1st edition of IEC61508 (1998), such a monitor was called a
“safety bag”, a term coined by early work on diverse monitors in the context
of railway control [9].



not be defined for a particular variable, the safety condition
must be enforced by some other mechanism (e.g., a physical
interlock). Finally, if safety margins and safety actions have
been defined, we verify the consistency of safety actions that
can be carried out simultaneously.

The remainder of the paper is organized as follows: Sec-
tion II discusses previous work related to runtime verifica-
tion and safety monitoring. Section III presents terms used in
our approach and gives some precise definitions. Section IV
gives a brief overview of HAZOP/UML risk analysis, details
the safety margin elicitation step and presents some initial
results on safety action consistency checking. In Section V,
we apply this process to a robotic rollator and finally,
Section VI presents conclusions and future work.

II. RELATED WORK

Two of the important aspects of autonomous systems
are: their ability to make decisions, and the uncertain en-
vironment in which they operate, portending unexpected
behaviors that, if nothing is done, could cause catastrophic
damage. The need to make decisions autonomously in an
uncertain environment gives rise to software that is often
complex and error prone. Such software is difficult to verify
exhaustively since the state space is potentially huge and
cannot be defined in advance.

Runtime verification appears as complementary method to
offline verification by theorem proving or model checking
since some information about environment behavior may
not be known before system deployment. Moreover, runtime
verification is not concerned by the state explosion problem
since only finite executions are checked. The IEEE defines
runtime verification as: “the discipline of computer science
that deals with the study, development, and application of
those verification techniques that allow checking whether
a run of a system under scrutiny satisfies or violates a
given correctness property” [11]. There have been several
interesting surveys and analyses of such approaches [12],
[13], [14]. The authors highlight the appropriateness of
runtime verification for safety-critical systems.

Checking whether an execution meets a correctness prop-
erty is typically performed using a component called a
monitor. The topic of our interest is safety monitors, which
are monitors checking constraints that aim to guarantee
the avoidance of catastrophic failures. Monitors have been
widely discussed in the literature. As in the IEC 61508
definition presented in section I, the authors generally dis-
tinguish two types of monitors:
• Non-independent monitors, also called intrusive [15] or

in-line [13] monitors, such as those presented in [14],
[16], [17], [18]. These works aim to deal with real-time
challenges like time sampling and the synchronization
between the monitor and the monitored system. For
example, in order to avoid code instrumentation (which
would require re-certification) [14] considers Copilot, a

stream language for runtime verification by monitoring
a set of global variables of the monitored system de-
signed to achieve functionality (i.e., the monitor cannot
change the monitored system’s behavior, unless the
latter has violated its specification), certifiability, and
timing isolation. Copilot-generated monitors can be in-
tegrated with the observed program without modifying
its functionality or real-time guarantees.

• Independent monitors, also called non-intrusive [15],
out-line [13] or diverse [4] monitors, have been widely
addressed. The application domains are various and
include space [19], [6], robotics [7], healthcare [8], and
railways [9]. These works address architectural issues
like the safety monitor observation and reaction levels,
the expression of the safety constraints in an adequate
language, the verification of these constraints, and the
definition of recovery actions.

As defined by the IEEE standard [11], monitoring requires
some properties to be checked. In order to be checked
by a monitor, the properties need to be expressed in an
appropriate formalism. Early work has been done by Pnueli
and Mana, who studied the language for specifying prop-
erties of reactive systems [20]. They proposed an extension
of ordinary predicate logic with a set of special temporal
operators. Many variants of temporal logics have been
developed in order to specify properties of real-time systems
that can be checked by on-line monitoring. See for example,
the comparative study by Alur and Henzinger [21], [22].

Despite numerous research works related to runtime ver-
ification of systems in general and safety monitoring in
particular, the problem of elicitation of the properties to be
monitored has not been specifically addressed, to the best
of our knowledge. Indeed, Leucker and Schallhart [12] cite
the generation of monitors from high-level specifications
as one of the key problems that needs to be addressed
in runtime verification. In the previously cited works on
safety monitoring [6], [7], [9], [19], [2], the properties to be
checked were obtained from standards and/or from domain
knowledge expertise, which can be problematic in terms of
completeness. To address this issue, we propose in this paper
a systematic process for eliciting the properties to be checked
starting from a HAZOP/UML risk analysis. We refer to these
properties as safety trigger conditions since, when such a
condition is detected (i.e., the system has entered a warning
state), the aim is to trigger appropriate safety actions to
remedy the situation.

III. BASELINE AND CONCEPTS

A. Definitions

In the literature surveyed in Section II, various meanings
are associated with terms such as: safety constraints, safety
rules, safety requirements, safety properties, etc. In our
previous work [23], we proposed some precise definitions



of these terms in order to base the proposed methodology
on a firm conceptual foundation. We recall these definitions
here together with some illustrative examples.
Safety Requirement. A safety requirement is general high-
level specification of what it means for a system to be safe.

Example: “the robot must not cause the patient to
fall”.

Safety condition. A safety condition is a sufficient condition
to avoid a hazardous situation.

Example: “the robot is stationary and not used by
a patient”.

Safety invariant (SI). A safety invariant is a necessary
safety condition, i.e., the violation of a safety invariant is
intolerable in that it implies an unacceptable risk of the
violation of a high-level safety requirement.

Example: “the robot speed shall not exceed
3 m/s” (where 3 m/s is the speed beyond
which harm is considered to be inevitable).

Safety action. A safety action is an activity carried out
explicitly to bring the system to a safe state.

Example : “apply emergency brake”.
Safety trigger condition (STC). A safety trigger condition
is a condition that, when asserted, triggers a safety action.

Example: “the robot speed is greater than 2 m/s”.
Safety margin. A safety margin is the “distance” between
a safety trigger condition and the negation of a safety
invariant.

Example: in the examples above, the safety margin
between the safety trigger condition (the robot
speed is greater than 2 m/s) and the negation
of the safety invariant (i.e., the robot speed is
greater than 3 m/s) can be expressed in terms
of the difference of speed characterizing each
condition (i.e., here, 1 m/s).

Safety rule. A safety rule defines a way of behaving in
response to a hazardous situation. A safety rule can be
operationalized as an if-then rule:
Safety rule , if [safety trigger condition] then [safety
action].

Example: “if the robot speed is greater than 2 m/s
then apply emergency brake.”

Figure 1 provides an illustration of the main concepts in
terms of a partition of the possible states of the monitored
system into safe, warning and catastrophic states. A safety
trigger condition must be asserted when the system passes
from a safe state (e.g., xs on Figure 1) to a warning state
(e.g., xw). If the system is in a warning state, then the safety
monitor must trigger a safety action to bring the monitored
system toward a safe state. The set of warning states specifies
the safety margin. If the safety monitor fails to bring the
system back into a safe state, it may reach a catastrophic
state (e.g., xc). The figure also illustrates the purpose of a
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Figure 1. Illustration of main concepts

safety interlock: the removal of paths that could lead the
system from a safe state to a catastrophic state, without
passing by an intermediate warning state.

Therefore, we can define a safety monitor versus a safety
interlock as follows:
Safety monitor. A safety monitor is a mechanism that seeks
to prevent undesired system states from being reached by
detecting unsafe system states and triggering appropriate
actions to bring the system back to a safe state.
Safety interlock. A safety interlock is a mechanism that
seeks to prevent undesired system states from being reached
by inhibiting events that could cause such states to be
reached from the current system state.

B. Safety invariants and safety trigger conditions

We formally define the previous terms in order to be able
to determine the conditions under which an STC defines a
valid safety margin.

Let x ∈ X be the tuple of safety-relevant variables, x =
〈x1, x2, ..., xn〉, such that X represents the set of discernible
system states.

A safety invariant is a predicate SI : X → B such that
SI is true in non-catastrophic states.

With respect to a safety invariant SI(x), the set of
catastrophic states, Xcata, of the monitored system is thus:

Xcata = {x ∈ X | SI(x)}

A safety monitor observes the tuple of safety-relevant
variables and evaluates the system state by means of a safety
trigger condition STC : X → B that evaluates to true when
the safety monitor judges that the system is not in a safe
state. Thus, the set of safe states, as judged by the safety
monitor, is defined by:

Xsafe = {x ∈ X | STC(x)}



Obviously, we require that safe states not be catastrophic
states, i.e., Xsafe ∩ Xcata = ∅, whence:

∀x ∈ X : SI(x) ∨ STC(x) (1)

States that are neither safe nor catastrophic constitute a
subset of system states in which the safety monitor can
(and should) trigger a safety action aiming to prevent the
monitored system from reaching a catastrophic state and
bring it back to a safe state. We call this subset, the set
of warning states. It is defined by:

Xwarn = {x ∈ X | SI(x) ∧ STC(x)}

Considering now the possible transitions between system
states, to implement a safety monitor we require every path
from a safe state to a catastrophic state to pass through at
least one warning state. To formalize this requirement, let
us consider a safe state xs and a catastrophic state xc, and
define a path from xs to xc as a function π:

π

 [0, 1]→ X
0 7→ xs
1 7→ xc

such that π is a continuous function on continuous variables
and monotonous on discrete variables (π follows transitions
on discrete variables). We define Π(xs,xc) = {π| π is
a path from xs to xc} to be the set of all such paths.
The requirement that every path from a safe state to a
catastrophic state passes though at least one warning state
can thus be expressed as:

∀xs,xc, STC(xs), SI(xc), (2)
∀π ∈ Π(xs,xc) : ∃ t, xw = π(t), STC(xw) ∧ SI(xw)

Note that this constraint imposes that no state adjacent to a
catastrophic state can be a safe state. If that were not the
case, a safety interlock would be required to remove the
corresponding transition.

With respect to a safety invariant SI(x), a safety trigger
condition must satisfy both constraints (1) and (2), which
leads to the following definition:

Definition 1 (Safety Trigger Condition). A safety trigger
condition is a predicate STC : X → B such that STC is
false in safe states, true in catastrophic states, and transitions
to true before reaching a catastrophic state on any path to
the latter from a safe state. Formally:

∀xc, SI(xc) : STC(xc)

∧ [∀xs, STC(xs),∀π ∈ Π(xs,xc) :
∃ t, xw = π(t), STC(xw) ∧ SI(xw)]

IV. THE PROPOSED METHODOLOGY

In this section, we first briefly describe the starting point
of our process – the definition of safety conditions based
on the results of a risk analysis – and then detail how the
requirements for safety monitors and safety interlocks can
be derived from them.

A. Extraction of safety conditions

The starting point of our method is a HAZOP/UML risk
analysis. This approach, presented in [24], is based on a
description of the system using UML and an adaptation of
the risk analysis technique HAZOP. HAZOP is a collabora-
tive method, where each element of the system is analyzed
considering possible deviations. Each deviation results from
the application of a HAZOP guideword to an attribute of a
UML model (this is noted in the “deviation” column of a
HAZOP table, where each line corresponds to a deviation).
Two further columns give the effect of the deviation in the
context of the use case and in the real world.

We can extract three safety conditions from each line of
a HAZOP table by negating the expressions obtained in the
columns: Deviation, Use Case Effect, Real World Effect.
Each safety condition is handled separately.

B. Safety margin and interlock elicitation process

If the safety condition is expressed using observable
safety-relevant variables, we first consider that the safety
condition is not only sufficient but necessary, i.e., it corre-
sponds to a safety invariant.
A global safety invariant SI is expressed in its conjunctive
normal form, i.e., SI = SI1∧. . .∧SIm, and each elementary
safety invariant SIi is expressed as a disjunction: SIi =
SIi(a) ∨ SIi(b) . . .. We refer the terms of the disjunction,
SIi(a), SIi(b), etc., as “atoms”. A similar suffix notation
is used for corresponding safety trigger conditions, e.g.,
STCi(a).

The disjunctive expression for SIi is then handled as
follows (we simplify the notation by using a, b, etc. to denote
SIi(a), SIi(b), etc.):

1) Build the graph corresponding to the expression:
SIi = a ∨ b ∨ . . . such that nodes are defined by
minterms over the atoms a, b, . . . , and transitions are
labelled by the value of the atom that changes. For
instance, in Figure 2, the safety invariant is: SI ≡ a∨b
which leads to 4 nodes and the associated transitions.
For simplification, we limit the analysis to transitions
inducing only one atom change, e.g., the transition
from the node āb (which stands for ā ∧ b) to graph
node āb̄ that is labelled by b̄. This step results in
a model which is similar to a “region automata”
(used in temporal automata), i.e., each node defines
a set of system states that satisfy a condition (for
instance, region 1 is the set of system states that
satisfy ab). Once the graph built, using the definitions



of Section III-A, we can calculate the sets of non-
catastrophic regions and catastrophic regions.

2) We are concerned by the transitions between a non-
catastrophic region and a catastrophic region. We
call such a transition a critical transition (e.g., the
transitions with dotted circles around b and a in Fig-
ure 2), and the corresponding non-catastrophic region,
a critical region; for example in Figure 2, regions (2)
and (3) are critical regions. We analyze each critical
transition separately to determine if a critical region
can be split into a safe region and a warning region.

a

b

SI= a ! b

ab

ab ab

ab

① ②

④③

a

a

b b

Figure 2. Region graph example

Based on Definition 1, a necessary condition for the
existence of warning regions is the possibility to partition the
non-catastrophic region into non-empty sub-regions. Con-
sider the example of Figure 3 (C, S and W refer respectively
to Catastrophic, Safe and Warning regions) corresponding
to the very simple case of SI = a. If a is defined by
a ≡ (v < vmax), where v is a safety-relevant variable, then a
partition is possible and can be expressed as:{{x ∈ X | v ≤
vmax − β}, {x ∈ X | vmax − β < v < vmax}} (for some
β ∈]0, vmax[). Conversely, if a is defined by a ≡ (v = 0),
then a partition of {x ∈ X | (v = 0)} into two non-empty
sub-regions is not possible.

For similar cases, i.e., with atoms that are functions of
one continuous variable, the previous necessary condition
can be generalized as follows:

Condition 1 (Existence of a warning region). Let X be a
critical region defined by p ∧ q (where p is an atom and q
is any conjunction of other atoms, including the trivial case
q = true), with a critical transition labeled by p. A warning
region exists if and only if there exists a partition of X , with
two parts X1 = {x|p∧ q ∧ e} and X2 = {x|p∧ q ∧ e} such
that e⇒ p.

Moreover, if such a partition exists, e, X1, and X2 are
possible candidates for STC, Xsafe and Xwarn respectively.

Notice that, besides its simplicity, such a condition is
valid for atoms which are function of continuous or dis-
crete variables. For the previous example, the partition is

defined by e = (v < vmax − β), which actually implies
a = (v < vmax), as required.

For critical transition atoms that are functions of several
variables, the condition is more complex, and is out of scope
of this paper.

Figure 3 illustrates the partitioning in the simple case
where p ∧ q = a. The critical region {x ∈ X|a} is
partitioned into two sub-regions: {x ∈ X|a ∧ e} ∈ Xsafe
and {x ∈ X | a ∧ ē} ∈ Xwarn. In this graph, in case of
violation of e, the system enters the warning region, ae, and
thus triggers a safety action. The precise definition of e, and
thus the safety margin, has to be carried out in collaboration
with domain experts to guarantee that the safety action can
bring the system back into the safe region. The transition a
to the catastrophic state labeled with C, is then considered
improbable (presented here with a dotted line).

If there exists a critical region with no possible partition,
or if the proposed partition and its safety trigger condition
are not validated by domain experts, two alternative solutions
can be envisaged:

1) the definition of a safety interlock to prohibit the
transition towards the catastrophic region,

2) the relaxation of the safety condition in order to allow
a temporary violation; the inclusion of time as a
supplementary safety-relevant variable must of course
be accompanied by a re-assessment of the risks by
safety and domain experts.

In this paper, we only consider the former solution (i.e.,
the introduction of a safety interlock if a safety margin
cannot be defined).

In the following section, we propose a simple method
for calculation of safety margins in the case of continuous
variables.

a

a

SI= a

ae aae
a

e

e

SI = a    STC= e

C CWS

a

C

Figure 3. The region graph before and after the safety margin elicitation

C. Special case of continuous variables
We consider here the case where safety invariants and

safety trigger conditions are defined as a inequality relations
on one or more continuous safety-relevant variables, that is:

SI(x) = (f(x) < 0) (3)
STC(x) = (g(x) ≥ 0) (4)

where f, g : X → R.
In this rather common case, it is possible to reformulate

the constraints (1) and (2), and Definition 1, in terms of
functions over x.



Constraint (1) becomes:

∀x ∈ X : (f(x) < 0) ∨ (g(x) ≥ 0)

Noting that, given (3) and (4), we have SI(x) =
(f(x) ≥ 0) and STC(x) = (g(x) < 0), we can rewrite
constraint (2) as:

∀xs,xc, (g(xs) < 0), (f(xc) ≥ 0),∀π ∈ Π(xs,xc) :
∃ t, xw = π(t), (g(xw) ≥ 0) ∧ (f(xw) < 0) (5)

Similarly, we can rewrite definition 1 as follows:

Definition 2. When a safety invariant and a corresponding
safety trigger condition are defined in terms of inequal-
ities on functions of continuous safety-relevant variables:
SI(x) = (f(x) < 0) and STC(x) = (g(x) ≥ 0), the
function g(x) must satisfy:

∀xc, (f(xc) ≥ 0) : (g(xc) ≥ 0)
∧ [∀xs, (g(xs) < 0),∀π ∈ Π(xs,xc) :
∃ t, xw = π(t),
(g(xw) ≥ 0) ∧ (f(xw) < 0)]

A particularly simple way to define a well-behaved safety
trigger function is:

g(x) = f(x) + θ (6)

for some constant θ.
The safety margin defined must be sufficient to allow

a recovery. This means that, depending on the physical
constraints of the system (the maximum deceleration for
instance), the safety margin must be defined such that
the safety action has enough time to achieve its effect.
Additionally, the safety margin should not be too restrictive,
i.e., it must be defined such that the system can fulfill its
mission. The safety margin definition is clearly a critical step
since it requires a compromise to be reached between the
system’s safety and availability. Therefore, the safety margin
definition requires the collaboration of safety experts and
domain experts.

D. Ensuring consistency of safety actions

It is important to check the consistency of the safety
actions that can be carried out simultaneously. We give some
preliminary ideas about how that can be facilitated using our
approach.

To specify the safety actions within the resulting graph,
we propose to model the system behavior using a Mealy
machine, which is a particular type of finite state machine
with outputs specified on transitions. This allows us to
specify, for a particular transition that asserts a safety trigger
condition, the corresponding safety action.

Remember that a global safety invariant SI is expressed as
a conjunction: SI = SI1∧· · ·∧SIm. When all the terms SIi
have been processed and the corresponding safety margins
or safety interlocks specified, the corresponding graphs can
be composed by taking their cartesian product. The resulting
graph allows identification of transitions that trigger a safety
action while another safety action is being carried out, and
which are thus potential causes of inconsistency.

We give some preliminary results on safety action consis-
tency checking in the case study below.

V. APPLICATION TO A MULTIMODAL INTERACTIVE
ROBOT

In this section, the robotic rollator case study is used to
validate the proposed methodology.

A. Target system

The MIRAS (Multimodal Interactive Robot for Assistance
in Strolling) project aims to develop a semi-autonomous
assistive robot for standing up and walking, designed to be
used in elderly care centers by people suffering from gait
and orientation problems (see Figure 4). The objective is to
let these patients become more autonomous, by helping them
to stand and sit, and walk around. The robot also includes
functionality to monitor the physical and physiological state
of the patient, and an ability to autonomously move to the
patient’s position when summoned.

Figure 4. Prototype of MIRAS robotic assistant

B. Elicitation of safety margins

We consider the risk analysis of the use case management
of strolling. From each line of the corresponding HAZOP
deviation table, we can extract three safety conditions (see
Figure 5), by negating the deviations obtained in the three
concerned columns. Let us consider the first deviation: “the
handles are not at the right height for strolling”.

The corresponding safety condition is: handles must be
at the right height for strolling, where the “right height” is



The handles must be at the 

right height for strolling

The patient must not stroll 

in a bad position

The patient must not fall or 
have problems due to 

posture

Deviation Use Case Effect Real World Effect

The handles are not at the 

right height for strolling

The patient strolls in a bad 

position

The patient falls or has 

problems due to posture

Safety conditions

Figure 5. Extraction of safety conditions from the HAZOP/UML table

defined by experts as an interval I = [h min, h max]. Let
x = 〈h, v〉 be the vector of safety-relevant variables where
h ∈ R+ is the height of the handles of the robotic stroller and
v ∈ R+ is the speed of the robot. Since these two variables
are indeed monitored in the considered system, we can
formalize the previous safety condition as the required safety
invariant: SI(x) = ((v = 0) ∨ (h ∈ I)), or equivalently,
SI(x) = a ∨ b, where a = (v = 0) and b = (h ∈ I). Since
the safety invariant is expressed using a disjunction, the left
part of Figure 6 illustrates the corresponding region graph.

The two critical transitions are highlighted on the left part
of Figure 6: (v > 0) and (h /∈ I) on edges going to the
catastrophic region.
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Figure 6. Processing of the safety condition: “handles must be at the
“right height” for strolling”

1) Let us try to define a safety margin to insert a warning
region on the critical transition (v > 0) (left-part of
Figure 6 with a dotted circle). In this case, it is not
possible to define a partition of the associated critical
region, defined by the atom (v = 0). Since (v = 0)
defines a single point, it is not possible to define an
atom e function of v, such that {x|(v = 0) ∧ e} and
{x|(v = 0) ∧ e} are different regions (Condition 1).
Thus, no safety margin can be defined. Since the
partition is not possible, an interlock needs to be
implemented to prohibit the critical transition (v > 0)
when v = 0 and h /∈ I . A simple one, with

agreement with domain experts, could be a physical
blocking device engaged in the wheels that can only
be unblocked when h ∈ I .

2) Let us try to define a safety margin to insert a
warning region for the critical transition (h /∈ I).
In this case, it is possible to create a partition of
the region defined by (h ∈ I) and thereby define
a safety margin. An obvious solution is to define a
sub interval I ′ included in I , leading to two parts
{x|h ∈ I ′} and {x|h ∈ I \ I ′}. But we show
here that our approach is generic using the method
presented in Section IV-C. The considered atom is:
SI(b) = (h ∈ I) = ((h > hmin) ∧ (h < hmax)).
Since h is a continuous variable, we can express the
safety invariant as an inequality: SI(b)(x) = (fb(x) <
0), where: fb(x) = max(hmin − h, h− hmax).
From (6), we can define gb(x) as follows: gb(x) =
fb(x)+hθ = max((hmin+hθ)−h, h−(hmax−hθ)),
which corresponds to a safety trigger condition
defined via (4) as: STC(b)(x) = (h /∈ I ′), where
I ′ = [hmin + hθ, hmax − hθ].

The right part of Figure 6 illustrates the resulting
graph. Region (2) of the left graph has been split
on the right graph into two regions labelled (B) and
(C). The transition leading to region (2) has been
decomposed into two transitions: one leading to
region (B) and the other to region (C). Similarly, the
transition leaving region (2) has been decomposed
into two corresponding transitions back to (A).

If the handle height h leaves the interval I ′ while
the robot is strolling (transition from (B) to (C)), we
trigger a safety action Emergency stop to stop the
robot. This safety action consists of hard braking and
thus impacts the velocity rather than the handle height.
Indeed, we cannot act directly on the handle height
since forcing the handles to put them at the correct
height implies an additional means of actuation to
override the (possibly faulty) nominal actuator. An
Emergency stop is also triggered should the robot start
to stroll while h is not in the interval I ′ (transition
from (A) to (C)).
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Figure 8. Processing of the safety condition: the robot speed must always
be less than vmax
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Figure 7. The system region graph under the two safety invariants

C. Graph composition for consistency verification of safety
actions

We now consider a second safety condition: the robot
speed must always be less than vmax. We handle this safety
condition, as in the previous example, by introducing a
margin Vθ. The new warning state will trigger Braking if
the speed is near Vmax. Figure 8 illustrates the resulting
graph.

The overall safety invariant is SI(x) = ((v < vmax) ∧
((v = 0) ∨ (h ∈ I))), i.e., a conjunction of two elementary
safety variants. Figure 7 illustrates the composition of the
previous graphs, which highlights that:
• There is no transition that triggers two safety actions

simultaneously.
• The transition from warning region 1 to warning re-

gion 3 triggers a safety action Braking while another
safety action Emergency Stop has already been trig-
gered. This does not represent a case of inconsistency
but it should be verified with the system expert whether
simultaneous execution of both actions is possible and
that it does not cause any damage should it occur. The
same thing happens for the transition from warning
region 2 to warning region 3: a safety action Emergency
Stop is triggered while another safety action Braking
has already been triggered.

VI. CONCLUSION AND FUTURE WORK

Safety monitoring for runtime verification of critical
autonomous system is highly recommended. This on-line
technique requires the definition of the safety properties
to be checked. However, to the best of our knowledge,
there has been no previous work on a systematic method
for defining such properties. This paper proposes a solid
methodology to elicit safety properties in the form of safety
trigger conditions, based on the outputs of a risk assessment
process.

The proposed methodology is systematic and enables us to
handle each deviation separately and thus deal with system
complexity. Once the deviations are handled, the resulting
region graphs can be composed to describe the system
behavior under the overall safety invariant and thereby allow
the consistency of the safety actions to be checked.

We are currently envisaging an implementation within the
context of the presented case study. For future work, we can
identify several directions, particularly defining formal meth-
ods for state graph specification and defining a systematic
method for safety action consistency checking. We aim to
apply the method to a larger number of examples available
on our case study and finally, we plan to develop a prototype
safety monitor implementing the generated safety rules and
to experiment it on the rehabilitation robot.
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