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Abstract—The progress of artificial intelligence techniques,
particularly decisional mechanisms, has allowed reactive systems
to become more autonomous. This allows new applications in
domains such as service robotics in which failures can lead to
human injury or death, or financial loss. To ensure safety of
such systems, we propose in this paper a process, based on a
HAZOP/UML risk analysis, to elicit safety rules that can be
enforced on-line. We present a case study of safety rule elicitation
for an assistive robot for strolling and discuss implementation of
the safety rules in a practical safety monitor.
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I. INTRODUCTION

Automated systems are now able to become more au-
tonomous thanks to recent progress in artificial intelligence
techniques, especially decisional mechanisms. Human inter-
vention is often no longer required, allowing new applications
in several critical domains, such as: automated transportation,
space exploration, rescue and maintenance operations within
irradiated areas, etc. These systems are often critical since
their failure can lead to human injury or even death, or
large financial losses. However, such systems are difficult to
validate due to their high complexity and the fact that they
operate within complex, variable and uncertain environments
in which it is difficult to predict all possible system behaviors.
Therefore, there has been considerable interest in making such
systems safe [1], [2].

Safety can be defined in absolute terms as “the absence
of catastrophic consequences on the user(s) and the environ-
ment” [3]. However, the notion of “zero risk” is utopian since
systems can and do fail during execution. The IEC 61508
standard recognizes this and defines safety as “the absence of
unacceptable risk” [4].

To obtain systems that fulfill their mission or avoid catas-
trophic failures, despite the presence of faults, a combination
of several methods can be used [3], which are: fault pre-
vention, fault tolerance, fault removal and fault forecasting.
In the context of safety, a popular form of fault tolerance
is safety monitoring through which the functional system is

continuously monitored and forced to a safe state should
some anomalous behavior be detected. Safety monitors appear
in the literature under many different terms, such as: safety
manager [5], autonomous safety system [6], checker [7],
guardian agent [8], safety bag [9], or diverse monitor [4]. The
latter IEC 61508 standard defines a diverse monitor as “an
external monitor, implemented on an independent computer
to a different specification. This diverse monitor is solely
concerned with ensuring that the main computer performs
safe, not necessarily correct, actions. The diverse monitor
continuously monitors the main computer. The diverse monitor
prevents the system from entering an unsafe state. In addition,
if it detects that the main computer is entering a potentially
hazardous state, the system has to be brought back to a safe
state either by the diverse monitor or the main computer.”

A safety monitor observes the behavior of the functional
system and aims to ensure that it respects a set of safety
rules. There may be many such safety rules for autonomous
systems since the latter can support multiple tasks, with each
task potentially requiring a different set of safety rules to be
enforced. Therefore, it is important to define a rigorous safety
rule specification process, with clear concepts and notations.
However, to the best of our knowledge, there has been little
research on this issue. In this paper, we present a systematic
process to generate the safety rules from a risk analysis of the
monitored system.

The remainder of the paper is organized as follows: Sec-
tion II presents some background material on safety critical
autonomous systems and related work in safety monitoring.
Section III presents definitions of terms used in our approach
and the methodology developed to elicit the safety rules. In
Section IV, we apply this process to a robotic rollator and
finally, Section V presents conclusions and future work.

II. BACKGROUND AND RELATED WORK

A. Safety critical autonomous systems and dependability

Autonomy has several descriptions in the literature; in its
most generic sense, it is defined as “the ability to self-manage,
to act or to govern without being controlled by others”. This
definition is insufficient for our purpose and a more suitable



definition of autonomy of robotic systems is found in [10] as
“the ability of integrated sensing, perceiving, analyzing, com-
municating, planning, decision-making, and acting/executing,
to achieve its goals as assigned. The autonomy level is
determined by the complexity of the missions that the system is
able to perform, the degrees of difficulty of the environments
within which the system can perform the missions, and the
levels of operator interaction that are required to perform the
missions”. This definition focuses on two important aspects of
autonomous systems: the first is the ability to make decisions,
the second is the uncertain environment in which the system
operates, portending unexpected behaviors that, if nothing is
done, could cause catastrophic financial or human damage.
The need to make decisions autonomously in an uncertain
environment induces software that can be quite complex and
error prone (e.g., through the use of heuristics). Moreover,
autonomous software is difficult to verify exhaustively since
the state space is potentially huge and cannot be defined in
advance since some situations with which the system might
be faced may not be known before system deployment. Indeed,
from a dependability viewpoint, autonomous systems have
to address both endogenous hazards arising from faults and
defects in the autonomous system itself and exogenous hazards
arising from the physical, logical and human environment of
the autonomous system [11]. Here, we investigate a safety
monitor approach for addressing these hazards.

B. Safety Monitors

Several works on safety monitors can be found in the
literature [12], [5], [8], [13]. Here, we briefly analyze four
exemplary applications of safety monitors:
• the autonomous safety system of the Ranger Robotic

Satellite Servicer [6] developed by NASA and the Uni-
versity of Maryland to refuel, repair, and upgrade the
International Space Station (ISS);

• the safety bag developed within Elektra (LockTrac Elec-
tronic Interlocking System) [9] by Alcatel Austria to en-
sure that railway safety regulations are respected despite
hardware and residual design faults;

• the Request and Report Checker (R2C) developed within
the LAAS architecture for autonomous systems [7] to
enforce safety constraints between concurrent real-time
activities;

• the DLR Co-Worker developed by the German Aerospace
Center DLR [14], which implements various recovery
strategies in the face of possible collisions between the
robot and the human.

Here, we will analyze these examples regarding the pro-
cesses through which safety rules are elicited, how they are
expressed and how they are checked on-line (see Table I).
To the best of our knowledge, there has been no work that
specifically addresses the problem of definition and elicitation
of safety rules or safety constraints despite the abundance
of research relating to monitoring and verification of safety
constraints. In most cases, the cited safety rules are defined
on the basis of standards and/or the experience of domain

experts. This can be problematic in terms of completeness.
In Elektra, electronic systems were analyzed, in the early
versions, using FMECA (Failure Mode, Effects and Criticality
Analysis). This was dropped in the later versions, preferring
the implementation of a safety bag to ensure safety. The safety
rules have been elicited using standards with the help of
railway domain experts.
Similarly, no systematic process for safety rule elicitation was
followed for the DLR Co-Worker. However, conditions defined
with respect to combination of observable variables trigger
mode changes and consequently the enforcement of specific
safety tasks (which can be considered as safety rules). These
conditions for functional mode changes and the corresponding
safety tasks were defined by robotic domain experts.
In Ranger, only three hazards, issued from a risk analysis,
were addressed. Nevertheless, no additional information was
given by the authors.

Regarding the expression of the safety rules in a formal
language, there is no universal approach. The choice of the
language depends on the level of expressiveness required.
Considering the four examples, only Elektra and R2C use
a dedicated rule expression language (respectively PAMELA
and a first order logic). However, in these examples, expression
of real time properties is not considered.

On-line checking is poorly documented except for R2C
where the safety rules are automatically transformed into a
decision tree that allows fast on-line checking. In DLR and
Ranger, all safety properties are an integral part of the func-
tional code and are not verified separately in an independent
safety monitor. In Elektra, the the safety monitor (named
safety bag) is independent from the functional system and
consists of an expert system, i.e., a knowledge base that
includes the safety rules and the current system state; and
an inference engine which decides which rule needs to be
applied and checks if a request (system input) must be blocked
or committed. If the safety monitor and the functional system
disagree about an output, this output is blocked and the system
is put into a safe state (e.g., setting lights to red and blocking
all the trains).
We conclude from our survey of related work that there is a
need to define a systematic process for safety rule elicitation,
and to express the rules in a formal language that can express
real-time aspects and is amenable to on-line checking.

III. THE PROPOSED METHODOLOGY

A. Baseline and concepts

In the literature surveyed in section II, various meanings are
associated with terms such as: safety constraints, safety rules,
safety requirements, safety properties, etc. Here, we propose
some precise definitions of these terms in order to base the
proposed methodology on a firm conceptual foundation.

There are several definitions of “safety requirements” in the
literature. Medikonda et Panchumarthy [15] give the definition:
“[The] requirement [for a system] to be safe is that it does
not cause or contribute to a violation of any of the system
constraints on safe behavior”. Another definition (in context



Elektra Ranger R2C
DLR Co-

Worker

Elicitation of 

constraints/rules

Railway domain 

experts, standards
Risk analysis

Robotic domain 

experts

Robotic domain 

experts

Expression of 

constraints/rules
PAMELA

Included in 

the code

Logical first 

order 

predicates

Included in the 

code

Verification of 

constraints/rules

On-line verification 

(Inference engine 

of the safety 

channel)

Code 

execution
ExoGen Code execution

TABLE I
MEANS FOR ELICITATION, EXPRESSION AND VERIFICATION OF SAFETY

RULES

of robotics) is given in the standard IEC 9126 − 1 [16]:
“Safety requirements are rules to ensure the safety of per-
sonnel associated with the use of a robotic system”. These
definitions are quite general, but it should be noted that the
former definition is dependent on how the “system constraints
on safe behavior” are defined. Here, we prefer to consider a
safety requirement as a general but informal objective from
which we can refine a set of formal safety invariants. We
propose the following definition:

Definition 1. A safety requirement is a general high-level
specification of what it means for a system to be safe.
Example: “the robot must not cause the patient to fall”.

Firesmith et al. [17] define the notion of “safety constraints”
that “[specify] authorized system behaviors and component
interactions, where a safety constraint specifies a specific
safeguard”. Medikonda and Panchumarthy [15] define a safety
constraint in the following way: “a hazard characterizes a
system state that for safety reasons should not occur. If this is
negated and some safety margins are included we get a safety
constraint, i.e., a description of a property that the system
should possess in order to be safe”. These two definitions
are inconsistent. The first definition implies that a safety
constraint is a necessary condition (its violation means that
a safeguard has failed) while the second definition considers
it as a sufficient condition that, given the safety margin, might
be temporarily violated. Indeed, the notion of a safety margin
implicitly means that if such a constraint is violated, it is not
too late to do something to prevent a catastrophe. Here, we
follow the latter approach which we make explicit by means
of four basic concepts: safety action, safety condition, safety
invariant, and safety trigger condition.

Definition 2. A safety condition is a sufficient condition to
avoid a catastrophic situation. Example: “the robot is stopped
and not used by a patient”.

Definition 3. A safety action is an activity carried out
explicitly to bring the system to a safe state. Example: “apply
emergency brake”.

Definition 4. A safety invariant is a necessary safety con-
dition, i.e., the violation of a safety invariant is intolerable
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Fig. 2. Illustration of catastrophic, safe and warning states

in that it implies immediate harm and violation of a high-
level safety requirement. Example: “the robot speed shall not
exceed 3 m/s” (where 3 m/s is the speed beyond which harm
is inevitable).

Definition 5. A safety trigger condition is a condition that,
when asserted, triggers a safety action. Example: “the robot
speed is greater than 2 m/s”.

We can then define a safety margin as follows:

Definition 6. A safety margin is the “distance” between a
safety trigger condition and the negation of a safety invariant.
Example: in the examples above, the safety margin between
the safety trigger condition [“the robot speed shall not exceed
3 m/s”] and the negation of the safety invariant [“the robot
speed shall not exceed 2 m/s”] is equal to 1m/s.

Finally, we define the notion of a safety rule. At the level
of organizations, such rules are defined as regulations that
must be respected by personnel, for example: “safety helmets
must be worn at all times”. Here, we use the term in a
more operational sense. Based on the notions of safety trigger
condition and safety action, we define a safety rule as follows:

Definition 7. A safety rule is a defined way of behaving
in response to a hazardous situation. A safety rule can be
operationalized as an if-then rule: Safety rule

4
= if [safety

trigger condition] then [safety action]. Example: if the robot
speed exceeds 2 m/s then apply emergency brake.

Figure 2 provides an illustration of the main concepts in
terms of a partition of the possible states of the monitored
system into safe, warning and catastrophic states. A safety
trigger condition must be asserted when the system passes
from a safe state (e.g., xs on figure 2) to a warning state (e.g.,
xw).

B. Overview of the method

Figure 1 describes the steps of the proposed method of
safety rule elicitation. The objective of this process is to elicit
the safety rules that will be executed by the safety monitor.

If the system is in a warning state, then the safety monitor
must trigger a safety action to bring the monitored system
toward a safe state. The set of warning states specifies the
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safety margin. If the safety monitor fails to bring the system
back into a safe state, it may reach a catastrophic state (e.g.,
xc).

Our goal is to define the thresholds separating warning
states from catastrophic states, and safe state from warning
state, corresponding respectively to safety invariants and safety
trigger conditions.

Our starting point is a HAZOP/UML risk analysis [18].
This method allows the identification of major risks through
the analysis of deviations of system usage scenarios described
with UML (Unified Modeling Language) [19]. The method is
systematic in that guidewords are applied to every attribute of
each use case and each sequence diagram. Each such deviation
is a possible erroneous system behavior that is further analyzed
regarding potential causes, consequences and consequence
severities (recorded in “deviation tables”).

From these tables, a set of safety conditions are formulated.
The next step is to analyze the nature of the “safety-relevant”

variables contained in each safety invariant candidate. If the
variables are not observable by the safety monitor, we need
to envisage additional means of observation. If the variables
are observable, we define safety margins for those variables
whose admissible domains allow such margins to be defined.
If a safety margin cannot be defined for a particular variable,
we can attempt to specify a temporal margin by considering
whether the safety condition can be temporarily violated. If
a safety margin, and thus a safety trigger condition, can be
defined, the final step is to define the actions that must be
performed to bring the system toward a safe state. If no safety
margin can be defined, the safety condition must be considered
as an irreducible safety invariant that cannot be used to define
safety rules executable by the safety monitor, but might be
enforceable by some other mechanism.

When all safety conditions have been analyzed, the outputs
of the proposed process are thus:



1) a set of safety rules resulting from safety invariants
allowing margins to be defined;

2) a set of safety invariants not allowing margins to be de-
fined, which can be handled by other safety mechanisms;

3) a set of safety invariants for which no enforcement
mechanism can be defined, thus highlighting the need
for further review of the specification, the design or the
usage of the monitored system.

Hereafter, we will describe in detail each step of the process.

C. Identification of safety conditions from HAZOP/UML ta-
bles

1) HAZOP/UML based risk analysis: HAZOP (HAZard
OPerability) [20] is a risk analysis method that allows the
identification of major risks through the analysis of deviations
of system design intention. Through the use of guidewords,
it enables a systematic analysis. HAZOP/UML [18] is an
adaptation of HAZOP for risk analysis based on system usage
scenarios.
These scenarios are described with the common Unified
Modeling Language (UML) [19] which is a standard for
system description and easily understandable by non-experts.
Furthermore, it is easy to model human-robot interactions with
UML at the earliest stages of system development.
The method presented in [21] can be decomposed in two
steps. First the system is represented in UML with use case
diagrams and sequence diagrams. It provides a description
for each use case, and represents a nominal scenario in a
sequence diagram. Second, the HAZOP method is applied to
each use case and each sequence diagram by applying the
guidewords to the attributes of the diagram [18]. Attributes
refer to preconditions, postconditions and invariants for a use
case; and to predecessors and successors during the interaction,
message timing, send and receive objects, guard conditions of
the message and message parameters for a sequence diagram.
The authors proposed an adaptation of the HAZOP guidewords
for use cases and sequence diagrams. The result is a set of
deviation tables which includes the identification of hazards
and recommendations for requirements design and use of the
system. Table II presents an extract of a deviation table. Each
line in a deviation table corresponds to a single deviation. The
columns of a deviation table include (among others):
• the definition of the deviation,
• a description of the effect of the deviation in the context

of the considered use case,
• an analysis of the real-world effect of the considered

deviation.

2) Identification of safety conditions: The safety rule elic-
itation process starts by the identification of safety conditions
from the deviation tables. From each line of the deviation table
in which the severity is different from None, i.e., severity ∈
{minor,moderate, serious, severe, critical, fatal}, an at-
tempt is made to formulate safety conditions for each of

the three columns: Deviation, Use Case Effect, Real World
Effect. These safety conditions are typically the negation of
the alteration defined in each column (see figure II). However,
it should be noted that HAZOP/UML risk analysis is a
systematic but informal process based on a human expertise,
which can give rise to incoherent and unusable deviations from
which it is not possible to specify a safety condition from any
of the three columns.

For each use case and sequence diagram, we identify a set
of safety conditions which are expressed using environmental
quantities that we refer to as safety-relevant variables. Some of
these variables may be controllable by the system (e.g, brakes,
velocity setpoint,...). The environment variables collectively
represent the state of the system’s environment. Depending
on whether or not appropriate perception mechanisms are
available (laser detector, camera, etc), safety-relevant variables
may or may not be monitored by the safety monitor. If a
safety condition contains unobservable safety-relevant vari-
ables, additional observations can be envisaged and the safety
condition rewritten accordingly. Otherwise, we must review
the specification, the design or the usage of the monitored
system.

D. Safety trigger condition and invariant definitions

Let x ∈ X be the tuple of safety-relevant variables,
x =< x(1), x(2), ..., x(n) >, such that X represents the set of
discernible system states. A safety invariant is a true valuation
of a function SI : X → B, i.e., SI(x) = true 1.

With respect to a safety invariant SI(x), the set of catas-
trophic states, Xcata, of the monitored system is thus:

Xcata = {x ∈ X | SI(x)}

Given a safety invariant SI(x) defining the set of catas-
trophic states, our aim is to refine the set X\Xcata into two
disjoint sets: a set of safe states and a set of warning states.
The safety trigger condition defined previously (Section III-A)
is the condition that must be asserted when the system leaves a
safe state to a warning state. Moreover, we require every path
between a safe state and a catastrophic state must pass through
at least one warning state (see Figure 2). We can then formally
define the previous requirement using the safety condition. Let
us consider two states x1 and x2.

We can define a path from xs to xc as a function π:

π

 [0, 1]→ X
0 7→ xs

1 7→ xc

such that π is a continuous function on continuous variables
and monotonous on discrete variables (π follows transitions
on discrete variables).

Π′(xs, xc) = {π| π is a path from xs to xc} is the set of
all possible paths from xs to xc.

1We will also use SI(x) and SI(x) to denote true and false valuations of
SI(x).
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We can now define a safety trigger condition, based on the
previous requirement, as follows:

Constraint 1. A safety trigger condition is a function
STC : X → B that fulfills the following constraint:

∀xs, xc, STC(xs), SI(xc), (1)
∀π ∈ Π(xs, xc) : ∃ t, xw = π(t), STC(xw) ∧ SI(xw)

With respect to a safety trigger condition STC(x), the set
of safe states of the monitored system is:

Xsafe = {x ∈ X | STC(x)}

and, with respect to safety invariant SI(x), the corresponding
set of warning states is:

Xwarning = {x ∈ X | (STC(x)∧SI(x))} = (X\Xsafe)\Xcata

The set of warning states corresponds to the safety margin
between the assertion of the safety trigger condition and
violation of the safety invariant. Those concepts are illustrated
in a simplified representation in Figure 3.

E. Safety actions

If a safety trigger condition is asserted, a safety action must
be triggered to maintain the system in a safe state. The safety
margin must be specified such that the system has time to react
and return to a safe state before reaching a catastrophic state.
The recovery action depends on the reaction strategy of the
safety monitor. This strategy is defined by domain experts and
depends particularly on the safety vs. availability objectives. It

1 Safety trigger condition and invariant defini-
tions

Let x ∈ X be the tuple of environment variables, x =< x1, x2...xn >, such that
X represents the set of discernible system states.

Definition 1 A safety invariant is true valuation of a function SI : X → B,
i.e., SI(x) = true1.

With respect to a safety invariant SI(x), the set of safe states, Xsafe, of the
monitored system is thus:

Xsafe = {x ∈ X | SI(x)} (1)

Given a safety invariant SI(x), our aim is to define safety trigger condition
STC : X → B that is false in some nominal subset of Xsafe and then becomes
true (to trigger a safety action) if the system state changes to a more dangerous
state, but such that the safety invariant SI(x) remains true. To define STC,
we define ≺ a partial ordering relation on states x, y ∈ X (X is thus a metric
space), such that x ≺ y if x is safer than y.

Definition 2 A safety trigger condition is a function STC : X → B that fulfils
the following conditions:

STC(x) ⇒ SI(x) (2)

∀x, y, STC(x) ∧ SI(y) : ∃z, x ≺ z ≺ y, STC(z) ∧ SI(z) (3)

With respect to a safety trigger condition STC(x), the set of nominal states
of the monitored system is:

Xnominal = {x ∈ X | STC(x)} (4)

and, with respect to safety invariant SI(x), the corresponding set of dangerous
states is:

Xdanger = {x ∈ X | (STC(x) ∧ SI(x))} = Xsafe\Xnominal (5)

However, it should be noted that (5) is an insufficient condition for Xdanger

to be interpreted as a safety margin. For that, STC(x) and SI(x) must satisfy
condition (3).

To specify the set of dangerous states from the safety conditions, we must
define define the set Xdanger such as it assert the equation (2) and (3).

1We will also use SI(x) and SI(x) to denote true and false valuations of SI(x)).
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to be interpreted as a safety margin. For that, STC(x) and SI(x) must satisfy
condition (3).

To specify the set of warning states from the safety conditions, we must
define define the set Xwarning such as it assert the equation (2) and (3).

1

SI(x)

Fig. 3. The formal definition of the different system states

could happen that several safety trigger conditions are asserted
at the same time, and trigger different safety actions that
could be in conflict. We can determine the system states
that could trigger several actions simultaneously, but it is the
responsibility of domain experts to determine if these different
actions are consistent or not (e.g., brake and accelerate at the
same time). Formally specifying the safety trigger conditions
can help in this respect since we can use solvers to check
consistency and reachability of the resulting list of safety
trigger conditions.

The safety actions triggered could vary depending on the
dangerousness of the current warning state. For instance, we
can set a time limit on the execution of the safety action.
Once this time has elapsed, if the safety trigger condition is
still asserted (i.e., the system has not yet recovered its nominal
state), another more decisive safety action is triggered. This



Fig. 4. The Multimodal Interactive Robot for Assistance in Strolling

strategy may be covered in our approach by defining several
safety trigger conditions using time as an observable variable.

IV. APPLICATION TO A MULTIMODAL INTERACTIVE
ROBOT

A. Target system

MIRAS (Multimodal Interactive Robot for Assistance in
Strolling) is a collaborative research project involving ISIR
(Institute of Intelligent Systems and Robotics), ROBOSOFT,
LAAS-CNRS, and several French hospitals. This project aims
to develop a semi-autonomous assistive robot for standing up
and walking, designed to be used in elderly care centers by
people suffering from gait and orientation problems (Figure 4).
The objective is to let these patients become more autonomous,
by helping them to stand and sit, and walk around. It also in-
cludes functionality to monitor the physical and physiological
state of the patient, and an ability to autonomously move to
the patient’s position when summoned.

B. Elicitation of safety trigger condition and safety invariant

The functional behavior of the MIRAS robot was
modeled using 16 use cases and 18 sequence diagrams.
The HAZOP/UML risk analysis carried out on this model
generated 395 deviations which in turn led to the identification
of 15 high level dangers and 84 recommendations. The
proposed methodology has currently been applied for now on
3 of the 16 use cases leading to the definition of 21 safety
conditions, and 19 safety trigger conditions and invariants.
Here, we will explain one safety rule elicitation process.

We consider the risk analysis of the use case management of
strolling. From the first line of the deviation table illustrated in
Table II, we can extract three safety conditions (see Figure 5),
by negating the deviations obtained in the three concerned
columns.

Let us consider the safety condition: handles must be at
the “right height” for strolling; the “right height” is defined
by experts as an interval I = [h min, h max]. Let the
system state be defined by x =< h handles, v >, where
h handles ∈ R+ is the height of the handles of the robotic

The handles must be at the 
right height for strolling

The patient must not stroll 
in a bad position

The patient must not fall or 
have problems due to 

posture

Deviation Use Case Effect Real World Effect

The handles are not at the 
right height for strolling

The patient strolls in a bad 
position

The patient falls or has 
problems due to posture

Safety conditions

Fig. 5. Extraction of safety conditions from the HAZOP/UML table
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Fig. 6. Elicitation of safety margin on continuous variables (velocity and
height of handles)

stroller and v ∈ R+ is the speed of the robot. Since these
two variables are monitored in our system and allow margins
to be defined (continuous variables); so we can consider the
previous safety condition as the final safety invariant:

SI(< h handles, v >) = ((v < Ω) ∨ (h handles ∈ I))

where Ω is a (small) positive constant defining a maximum
speed at which the robot can move while the handles are
not at the right height. This safety invariant leads to a set
of system states that can be split into a safe set and a warning
set, as presented on Figure 6, with a safety trigger condition
as follows:

STC(< h handles, v >) = ((v > 0) ∧ (h handles /∈ I ′))
with

I ′ = [h min+ ε, h max− ε′],
ε, ε′ ∈ R+, h min+ ε < h max− ε′

This safety trigger condition can be checked on Figure 6 and
fulfills the constraint (1) where STC(y) ∧ SI(y) = (v ∈
[0,Ω[∧h handles 6∈ I ′) ∨ (h handles ∈ I\I ′ ∧ v > 0)
defines the set of warning states.

Alternative version of the previous example: We consider
the same safety condition as in the previous example, i.e., that
handles must be at the right height during strolling. However,
in this example, we require that the robot be stationary when
the handles are not at the right height. The corresponding
safety invariant is then:

SI(< h handles, v >) = ((v = 0) ∨ (h handles ∈ I))
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Fig. 7. Elicitation of safety margins on continuous variables (velocity and
height of handles) - Alternative version

A
v > 0
h ∉ I

Block=F

B
v > 0

h ∈ I \I'
Block=F

C
v > 0
h ∈ I'

Block=F

D
v = 0
h ∉ I

Block=T

E
v = 0

h ∈ I \I'
Block=T

F
v = 0
h ∈ I'

Block=X

The safety action
is unsuccessful

Prohibited 
with an 
interlock

Prohibited 
with an 
interlock

A safety action
is triggered

(e.g., emergency braking)

The safety 
action is 

successful

(v=0) ∧ (h ∉ I') ⇒ Block

Failure of 
functional layer

The safety 
action is 

successful

Fig. 8. State diagram illustrating all safety states including the interlock

Considering this invariant, the safe set is graphically presented
on Figure 7 as the union of all states with v = 0 (x-axis) and
sets with h handles ∈ I (green and orange rectangles). The
Block variable will be used later. In this case, it is no longer
possible to create a warning set between the set of safe states
{< h handles, v > |v = 0∧h 6∈ I} and the set of catastrophic
states {< h handles, v > |v > 0 ∧ h 6∈ I}. If the system is
in the zone {< h handles, v > |v = 0 ∧ h 6∈ I}, increasing
velocity will directly lead to a catastrophic state. Then, it is
obvious that the safety trigger condition:

STC(< h handles, v >) = ((v > 0) ∧ (h handles /∈ I ′))
(2)

does not satisfy the constraint (1).
In this case, we claim that an interlock is needed in addition

to safety monitoring. Consider the state diagram presented
in Figure 8 which represents all possible states considering
domains of Figure 7. One state is catastrophic (A), one is
warning (B), and all the others are safe. In this diagram we
illustrate that all transitions going directly from safe states
to catastrophic states should be forbidden by means of an
interlock subsystem. In our case, one solution is to prohibit
transitions coming from states where v = 0, except when
h handles ∈ I ′. This can be done, for instance, by a

mechanical interlock that blocks the wheels (thus maintaining
v = 0) as long as h handles 6∈ I ′.

We represent the state of the interlock by a boolean Block
(is true when activated, false when deactivated), and add it to
the states as a new variable. In Figure 8, Block = true for
states D and E, false for states A, B, C and either true or
false for state F. In this case, the condition coming from the
combination of states D and E, leads to the formula specifying
the interlock : v = 0 ∧ h 6∈ I ′ => Block. Considering this
interlock, the constraint (1) can be rewritten as:

∀xsxc, STC(xs), SI(xc), (3)
∀π ∈ Π′(xs, xc) : ∃ t, xw = π(t), STC(xw) ∧ SI(xw)

where Π′(xs, xc) is limited to paths allowed by the interlock
(Π′ = Π\{paths forbidden by interlocking}). In this
context, the previous safety trigger condition (2) satisfies the
constraint (3).

Safety action and safety rule

In the previous examples (bad handle position while
strolling), we have obtained the same safety trigger condition.
If this safety trigger condition is asserted, we can engage the
brakes on the axes of the handles and/or on the robot base
since they are two controlled variables. Hence, the safety rule
of the two examples could be expressed, as follows:

SR : (v > 0) ∧ (h handles /∈ I ′)
⇒ handles brake ∧ base brake

Note that the safety margins are specified to allow the safety
monitor to trigger a safety action in order to bring the system
toward a safe state. Hence, the defined safety margin must
be sufficient to allow the safety monitor enough time to react
before the monitored system reaches a catastrophic state. The
sufficiency of the safety margin has to be decided by domain
experts.

V. CONCLUSION AND FUTURE WORK

Safety monitoring is a well-known safety assurance ap-
proach for critical systems. However, to the best of our
knowledge, there has been no previous work on a systematic
method for defining the safety rules that such safety monitors
need to enforce. This paper proposes the foundations of such a
method, based on the outputs of a systematic risk assessment
process.

The contributions of the paper are the following. First, we
have proposed precise definitions of concepts and formalisms
to express safety conditions, safety trigger conditions, safety
invariants and safety rules. Second, we have defined a sys-
tematic process for eliciting safety rules. This process starts
with the identification of safety conditions by means of a
HAZOP/UML risk analysis. We defined a corresponding for-
malism and a method for determining whether safety margins
can be calculated and corresponding safety trigger conditions
defined, or if safety interlocks are required.



Note that the completeness of the safety rules obtained by
our method depends on the completeness of the deviations
obtained from the risk analysis process (which depends on
the thoroughness of the expert in charge of the risk analysis).

Several directions for future work can be identified. First,
we need to define an automated method for checking that
invariant/trigger condition pairs define valid safety margins (cf.
constraint (1)) since the current manual procedure is tedious
and will not scale to larger dimension tuples of safety-relevant
variables. Second, for more complex safety rules, we plan
to use a temporal logic such as TPTL (Timed Propositional
Temporal Logic [22]) or timed automata. Third, we aim
to grade warning states into different levels in order to be
able to define nested safety rules based on the distance to
a catastrophic state. Fourth, we plan to develop a prototype
safety monitor implementing the generated safety rules and
to experiment it on the rehabilitation robot. Finally, in the
context of multi-functional systems such as service robots, we
plan to investigate how safety rules can be grouped into safety
modes [23] able to encompass different safety scenarios.
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