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Abstract—In this paper we propose a framework for motion
planning in stochastic map. Most of the recent planners are good
enough to solve motion planning problems. However, they need
a complete and accurate model of the environment and such an
assumption may cause a collision in executing the results in a
real world with its uncertainties. Considering uncertainties in
the model of environment, we reformulate the path planning
problem in a stochastic map and then propose a way to modify
classical path planning methods in order to fit into this new
framework. Our work shares ideas with previous work in this
area [11] but follows a different approach. In this framework,
sensors and landmarks need to be taken into account. The core
computations lie in the evaluation of the probability of collision
of configurations with the map.

I. INTRODUCTION
To perform a task autonomously, a robot should be able

to build a map of the environment and to plan motions
in this map. In this respect, motion planning and SLAM
(simultaneous localization and map building) have been active
research fields for the past twenty years. However, these fields
have evolved separately. Many robots are able to navigate in
indoor 2D maps built by sensors [1], [2], [3]. The problem
is well understood for these robots and some companies are
starting to sell products with indoor navigation capabilities.

However, for robots with high dimensional configuration
spaces like robotic arms mounted on platforms or humanoid
robots, performing autonomous motion is still a very difficult
problem. Several reasons explain this state of fact. First,
3D SLAM techniques usually build sparse maps of land-
marks containing no obstacles [4], [5], [6], [7] and planning
motions for a high-dimensional robots requires a 3D-map
of obstacles. Second, motion planning algorithms for high-
dimensional systems build geometric structures based on the
assumption that the map of the world is exact and static.
These structures are mainly hierarchies of bounding boxes
around obstacles [8] and roadmaps of local paths in the
free configuration space [9], [10]. Therefore, these algorithms
do not allow robust operations for high-dimensional robots
interacting with real world with many uncertainties. In fact, we
need to deal with uncertainties in models of the environment
evolving along time.

The objective of the work described in this paper is to
propose preliminary ideas that will enable path planning tech-
niques for high dimensional systems to deal with models built
by sensors. The motivation of this work is crucial in the way to
autonomous behaviors for mobile manipulators or humanoid
robots in unknown environments. In fact, the concept of
autonomy means generating the model of environment with

sensor and implement the techniques of motion planning in
this generated model. As such a model which is generated
by sensors is not exact and accurate and we have many
uncertainties in these models, we are going to propose a new
framework for motion planning to deal with this uncertainties.

The contribution of the paper is to propose a new framework
to plan motions in uncertain environments represented by
stochastic maps as built by SLAM techniques. We do not
address yet the non static aspect of the environment. We
assume that we have a stochastic Gaussian map composed
of landmarks the position of which is represented by a mean
vector and a covariance matrix. To make the reasoning simpler,
we assume that the landmarks are also obstacles. However, this
assumption could be easily relaxed.

Our work shares ideas with previous work in this area [11]
but follows a different approach. The main difference comes
from the localization notion that is taken into account in the
path planning step. The idea is to minimize the probability
of collision of a robot that would follow the path planned by
the algorithm. This probability naturally depends on the set of
landmarks the robot is going to perform localization on during
motion. Our approach significantly increases the complexity of
the problem but we strongly believe that landmarks should be
taken into account right at the path planning step.

The paper is organized as follows. In Section II, definitions
are presented and the main concepts of the framework are
introduced. In Section III, the method devised to plan paths in
stochastic maps is described. Moreover, the main algorithmic
point of the method which is the computation of the probability
of collision of a random configuration is presented at the end
of this section. Section IV gives a very simple example of a
path planned by the method.

We would like to emphasize that the contribution of the
paper is mainly conceptual. This work is very preliminary and
we do not have impressive experimental results yet. However,
we truly believe this preliminary work is worth reporting in a
paper.

II. DEFINITIONS

Suppose that a model of an environment and desired initial
and goal configurations are given to a planner. The result of this
motion planning problem is a path and the robot is supposed
to execute this reference path in a real environment. During
navigation in the the environment, the robot usually:

1) performs localization on landmarks of the map,



2) tries to make the result of localization converge toward
the configuration along the reference path.

To make the reasoning simpler, let us assume that the closed
loop control law of the robot is powerful enough to maintain
equality between the result of localization and the reference
configuration:

qloc(q, M) = qref (1)

where qloc is the result of localization that depends on the
actual position of the robot q and the actual position of
landmarks M (the map). This equation therefore defines a
relation between q, qref and M that we can inverse to get
an equality of the form:

q = g(qref , M) (2)

This equation can be understood as: “The executed path is the
result of both the reference trajectory expressed in a landmark-
based frame and the actual position of the landmarks”. This
statement is very intuitive. As a simple example, a planner
plan a path for a robot and at the result, the robot is supposed
to follow the trajectory along a wall. If the robot perform
localization on the wall, the actual trajectory will depend on
the real position of the wall also.

If the map does not correspond exactly to the actual
position of landmarks, the actual trajectory will be different
from the reference trajectory. If the map is represented by a
random variable defining the position of each landmark and the
correlations between these positions, the trajectory followed by
the robot is also a random variable. Therefore, the fact that this
trajectory is in collision will be a random event. This idea is
the basis of our work. We now give precise definitions for the
different notions we will use in our reasoning.

a) Stochastic map.: A stochastic map is a random vector
M , defining the position of several landmarks {l1, ..., lp} in the
environment. Each landmark is represented by a vector li of
dimension mi, i ∈ {1, ..., p}

M =

 l1
...
lp

 ∈ Rm (3)

where m =
∑p
i=1 mi.

b) Sensor: A sensor maps the position of a landmark(the
relative position of landmark) to the image space of the sensor:

imi = imi(q, li) ∈ Rpi , i ∈ {1, ..., l} (4)

where imi is the image of li in the associated sensor. For
instance, considering camera as the sensor, a 3D-point (R3) is
projected to the image space as a point of dimension 2. Also, a
vertical plane is projected in the image plane of an horizontal
laser range scanner as a straight-line.

If k landmarks are perceived simultaneously, we can put
the above equations in a vector as follow:

IM = f(q, M), IM ∈ Rr, q ∈ C (5)

where

IM =

 im1

...
imk

 r =
k∑
i=1

pi. (6)

c) Localization: consists in computing the maximum
likelihood configuration, given a perception and a stochastic
map:

qloc = f1(IM, M) (7)
= f2(q, M) (8)

after substituting (5).
d) Closed-loop trajectory tracking.: To track a reference

trajectory, a mobile robot usually implements a closed loop
control feedback. The effect of this control process is to make
the localization qloc converge toward the reference trajectory.

For simplification purposes, we assume that the closed-loop
control law is good enough to maintain equality between the
reference configuration and the localization:

qloc = qref (9)

Using (7), this equality defines a relation between the q,
qref and the map:

q = f3(qref , M) (10)

As a conclusion, given a reference trajectory qref (s), s ∈ [0, 1]
planned in a map of the environment, the trajectory q(s), s ∈
[0, 1] actually followed by the robot depends on the stochastic
map M . This trajectory is therefore a random variable and its
collision is a random event.

In the classical formulation of path planning, a trajectory
is said to be admissible (or collision-free) if any configuration
along this trajectory is collision-free.

In our framework,
Definition: A reference trajectory qref (s), s ∈ [0, 1] is said to
be admissible if the probability of collision of the trajectory
q(s), s ∈ [0, 1] actually followed by the robot is less than a
tolerance ε > 0.

The goal of our work is to propose a method for planning
admissible paths according to the above definition.

III. DESCRIPTION OF THE METHOD

In this section, we develop the computations necessary
to our method and we introduce some approximations or
simplifications.

A. Input Data

The data given as input to our path planning algorithms are
1) A Gaussian stochastic map built beforehand by SLAM

techniques represented by a mean vector M̄ and a
covariance matrix ΣM ,

2) An initial configuration qinit
3) A goal configuration qgoal.



B. Localization

Assuming that the actual configuration of the robot keeps
close to the reference configuration, we perform localization by
linearizing the relation (5) between the actual configuration and
images seen in the sensors about the reference configuration:

IMref +
∂f

∂q
(q− qref ) +

∂f

∂M
(M − M̄) = IM (11)

IMref is the expected image, that is the image seen from
reference configuration when M = M̄ and IM is the image
actually perceived.

To find the best estimator qloc of q , we use Gauss-Markov
theorem as follows.
Theorem: Gauss Markov.
Let X and Y be Gaussian random vectors such that

Y = H.X + b (12)

where H is a matrix and b a centered random vector of
covariance matrix Identity. The optimal estimator X̂ of X
given an observation of Y is given by:

X̂ = (HTH)−1HTY (13)

We consider ∂f
∂M (M−M̄) as a Gaussian noise in (11). The

covariance matrix Σb of this noise is:

Σb =
∂f

∂M
ΣM

∂fT

∂M
(14)

Based on Gauss-Markov theorem, the best estimator of q
is:

qloc = qref+(
∂fT

∂q
Σ−1
b

∂f

∂q
)−1 ∂fT

∂q
Σ−1
b (IM−IMref ) (15)

C. Feedback control law

As explained earlier, the robot is subject to a closed loop
control law that tends to make qloc converge toward qref . As
an approximation, we assume that these two configurations are
constantly equal, condition equivalent to:

∂fT

∂q
Σ−1
b (IM − IMref ) = 0 (16)

On the other hand, according to (11), the images IM in the
sensor depend on the configuration of the robot and on the
map. Therefore, substituting this later expression into (16), the
result will be:

∂fT

∂q
Σ−1
b (

∂f

∂q
(q− qref ) +

∂f

∂M
(M − M̄)) = 0

which can be inverted as:

q = qref − (
∂fT

∂q
Σ−1
b (

∂f

∂q
)−1 ∂fT

∂q
Σ−1
b

∂f

∂M
(M − M̄) (17)

This latter equation can be understood in two ways:
1) Given a reference configuration qref and an actual

position of landmarks M , we can predict the position

to which the robot will converge when trying to reach
qref in the environment.

2) Given a reference configuration qref and the stochastic
map of the environment, we can express the position the
robot will converge to as a random variable depending
on the map.

We will use the second one to devise our path planning
algorithm.

D. Path Planing

in Section II, we have given a definition of admissible paths
in a stochastic map. In this section, we are going to explain
how we plan admissible paths in a meaning close to this
definition. To make computations simpler, we indeed consider
that a path qref (s), s ∈ [0, 1] is admissible if and only if

∀s ∈ [0, 1], P (qref (s) is in collision) < ε

We then modify existing random motion planning methods
such as RRT or PRM. In the classical path planning frame-
work, roadmap based path planning methods pick random
configurations and build paths between these configurations.
The configurations and local paths are then tested for collision
using a collision detection algorithm. We replace the collision
detection algorithm by a computation of the probability of
collision of random configurations as defined by (17).

To approximate the probability of collision of a configura-
tion with random obstacles of the map, we approximate the
vector of random distances of the configuration to obstacles
by a Gaussian vector and compute the probability that one of
these distances is less than 0.

1) Distance to Obstacle: As the configuration of the robot
and the obstacles (or landmark) have been considered as
Gaussian variables, the distance between the robot and each
obstacle is also approximated by a Gaussian random variable.

Given a reference configuration qref , Equation (17) defines
a random configuration (depending on M ). The distance of
this configuration to each landmark li of the map is thus also
a random variable depending on M . We denote di(q, li) this
random distance. We build a random vector by gathering these
distances as follows:

d(q, M) =


d(q, l1)
d(q, l2)

...
d(q, lp)

 (18)

To approximate this vector by a Gaussian vector, we linearize
the distance function to get:

d(q, M)−d(qref , M̄) =
∂d

∂M
(M−M̄)+

∂d

∂q
(q−qref ) (19)

Replacing q by expression (17), we get a linear relation
between d(q, M) − d(qref , M̄) and (M − M̄) that we do
not express in this paper for clarity. All the computations can
however be done by considering:

1) The expression of the distance between the robot and
landmarks in a given configuration



2) The expression of the images in sensors with respect to
the configuration of the robot.

Point 1 requires the kinematic model of the robot and point 2
requires in addition the model of the sensors.

The last equation will result in a Gaussian approximation
of vector d(q, M) with mean value d(qref , M̄) and variance-
covariance matrix Σd.

After approximating the distance vector, the probability of
collision for an instance configuration should be calculated.

2) Calculating the Probability of collision: In an uncertain
world, the actual positions of obstacles are unknown. It is
unclear whether an instance configuration is collides with some
obstacles or is in free zone, thus whether we should accept
or reject it. We propose a collision probability parameter for
making decision on accepting or rejecting a configuration.
Therefore, based on the calculated mean value of distance d̄ to
obstacles and its variance-covariance matrix Σd, the probability
of collision for a proposed configuration will be calculated as
follow:

P (collision) = 1−P ( ¯collision) = 1−P (d(q, l) > 0) (20)

where inequality between two vectors is equivalent to inequal-
ity between each component. The probability of non-collision
will be as follows:

P ( ¯collision) =
∫

R
1d>0 dp(d) (21)

P ( ¯collision) =
1

(2π)
n
2
√
det(Σd)

∫
(R+)n exp(− 1

2 (x− d̄)TΣ−1
d (x− d̄))dx

(22)
As matrix Σ−1

d is a symmetric positive definite matrix, there
is a P such that Σ−1

d = PT .P . Also, by changing the variable
as y = P.x and dy = det(P ).dx, the probability will be ,

P ( ¯collision) = 1

(2π)
n
2
√
det(Σd)det(P )∫

P [(R+)n]
exp(− 1

2 (y − P.d̄)TΣ−1
d (y − P.d̄))dy

(23)

we propose 2 methods for calculating this integral:
Monte−Carlo Method and Direct approximation.

a) Monte-Carlo method: The integral that we want to
calculate is the probability of a Gaussian variable with a mean
value of P d̄ and matrix variance-covariance identity. So, we
can use n independent Gaussian variables with the following
algorithm:

b) Direct approximation method: In fact, in the second
method that we propose, we find a lower bound for this
integral which is much faster than the Monte-Carlo method.
Actually, we reduce the space of integration from a cone to a
hyper-spheres which centered on P d̄ having the greatest radius
(Figure 1). The radius of this hyper-sphere will be equal or
minimum distances of P d̄ to various hyper-plane which limits
the cone. We call this radius and the hyperbole of this radius
centered on P d̄ respectively R and Bn(R). So, if the point
P d̄ be inside the cone, there will be a negative distance to one

Algorithm 1 Monte-Carlo Algorithm
1: Input: Number of test(Nmax)
2: Initialization: Probability (p = 0)
3: For i=1 to Nmax

4: Generating a Gaussian vector v with mean value of P d̄
and matrix variance-covariance of identity.

5: IF v is inside cone P [(R+)n]
6: p + +
7: End
8: End
9: p← p

Nmax

10: Output: Probability (p)

Figure 1. Lower bound of probability of non collision of a configuration. The
integral is computed over a ball included in the cone defining non-collision.

of the obstacle and so, the calculation of probability will stop
and the result will be:

P (collision) = 1 (24)

As the iso-surfaces of our integral are hyper-spheres, we
can easily have a hyper-sphere change of variable as below:

∫
P [(R+)n]

exp(− 1
2 (y − P.d̄)T (y − P.d̄))dy >∫

Bn(R)
exp(− 1

2yT y)dy >

const(n− 1)
∫ R

0
rn−1exp(−0.5r2)dr

(25)

as,
If n is even, then: cons(n− 1) = 2pip−1

(p−1)! , n = 2p

If n is even, then: cons(n− 1) = 22p+1pipp!
(2p)! , n = 2p + 1

So, the only thing that should be calculated is∫ R
0

rn−1exp(− 1
2r2)dr which can be calculated by recursive

method. So, we can calculate a lower bound for the non col-
lision probability or a upper band for the collision probability
as follow:

p(collision) <

1− 1

(2P )
n
2

const(n− 1)
∫ R

0
rn−1exp(−0.5r2)dr

(26)

IV. EXAMPLE

To illustrate the method, we consider 42 obstacles in the
environment which are considered as landmarks also. Figure 2
shows the model of environment which the obstacles are
located in their mean value of their position. Given the map
of environment (the mean vector of obstacle position and
its variance-covariance matrix), robots size, and the start and



Figure 2. The mean value of the obstacle configurations and the robot initial
(I.P) and final (F.P) configuration.

goal configurations, the planner aims to produce a valid path
between start and goal.

In fact, the robot is supposed to find a path between the
initial point I.P and final point F.P in the map and tracks
the planned trajectory based on the captured images from the
environment. The robot is a two wheeled mobile robot and is
equipped with a 2D laser scanner. As it was explained in the
last sections, the planner uses the mean value of obstacles
(landmark) configuration build the road map based on the
proposed probabilistic method and find the appropriate path
between I.P and F.P . The probability threshold was set to
30% in this example.

Figure 3 shows the planned trajectory in the map of the
environment. Red dots reprensent the mean value of the
stochastic map. The red line represents the trajectory planned
based on this stochastic map. Blue dot represent a possible
real position of the landmarks and the blue line represent the
trajectory that would be actually followed by the robot in this
environment by performing localisation on the landmarks.

V. CONCLUSIONS

We have presented in this paper a new framework to take
into account uncertainty of the map in path planning. We
believe that this framework is more complete than previously
published work on this topic.

The main originality of our framework resides in the
prevision of the trajectory actually followed by the robot given
actual position of landmarks (simulation of localization and
motion control process), and in the estimation of collision
probability by linking trajectories with landmarks in a stochas-
tic framework.

Let us notice that the input of the path planning algorithm is
the output of a SLAM process. We then proposed an algorithm
to plan a path in stochastic map. A simple example illustrates
this preliminary work on the way to binding path planning
with SLAM.
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