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Abstract� This paper presents a novel and generic ap-
proach of path optimization for nonholonomic systems. The
approach is applied to the problem of reactive navigation
for nonholonomic mobile robots in highly cluttered environ-
ments. A collision-free initial path being given for a robot,
obstacles detected while following this path can make it in
collision. The current path is iteratively deformed in order
to ge away from obtacles and satisfy the nonholonomic con-
straints. The core idea of the approach is to perturb the
input functions of the system along the current path in or-
der to modify this path, making an optimization criterion
decrease.

Fig. 1. Hilare 2 towing a trailer: a nonholonomic system of dimen-
sion 4 with 2 nonholonomic constraints.

I. Introduction

Most wheeled vehicles are subject to constraints of
rolling without slipping and thus belong to the large class
of nonholonomic systems. Buses, trailer-truck systems, and
cars are a few examples. Research e�orts have been made
in the past to understand and control the motion of these
systems. These works were �rst initiated in robotics when
researchers discovered that wheeled mobile robots are non-
holonomic. Today, car manufacturers are very interested in
motion control of wheeled vehicles. Most of them plan to
equip their vehicles in a near future with computer aided
motion capabilities like parallel parking or automatic stop-
and-go mode in tra�c jams. Thus, better understanding
and controlling the motions of nonholonomic systems will
open a large �eld of industrial applications in the domain
of transportation.
Producing automatic motions for nonholonomic mobile

robots soon revealed a di�cult task. For this reason, the
problem has been decomposed into two steps. The �rst step
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Fig. 2. Deformation of the path of mobile robot Hilare 2 towing a
trailer. Each path along the deformation process is represented by
a curve of abscissa s in the con�guration space, while τ represents
time. In this example, the robot is on the left and obstacles (not
represented on the picture) detected by a laser scanner make the
initial path (τ = 0) in collision.

consists in computing a collision-free motion using a map of
the environment. The second step consists in executing the
motion. As a consequence, past research on nonholonomic
systems has mainly focused on two aspects: path planning
on the one hand [16], [26], [27], [14], [17], [4], [5], [18] and
motion control on the other hand [23], [19], [9], [25]. Few
of these works have addressed both aspects together.

For long range motions, the above two step approach
raises three issues: localization uncertainty, imprecision of
the map of the environment and unexpected obstacles that
are not in the map. These three issues have a common con-
sequence: a path initially planned to be collision-free may
become in collision at the execution step. To overcome
these di�culties, [21] proposed a method that enables him
to deform on line the path to be followed by the robot in
order to get away from obstacles detected along the mo-
tion. This approach has been extended to the case of a
unicycle-like mobile robot in [10] and then to the case of a
holonomic mobile manipulator in [3]. In both papers, the
geometry of the robot is approximated by a set of balls
and no or only one very simple nonholonomic constraint
is treated. None of these methods is applicable to more
complex nonholonomic systems like car-like robots.

To plan and execute motions in dynamic environments,
[8] developed the concept of velocity obstacles, de�ning the
set of forbidden velocities given the velocity of the obsta-
cles. This concept is used in [15] to perform local goal
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oriented obstacle avoidance. This technique is particularly
e�cient in environments where a lot of obstacles are mov-
ing since the velocity of the obstacles is taken into account
in the avoidance strategy. However, it is based on very
simple models of the robot and of the obstacles: they all
are spherical. This simpli�cation forbids applications for
multi-body mobile robots moving in very cluttered envi-
ronments where the robot needs to pass very close to the
obstacles.

In this paper, we propose a novel and generic approach
of path modi�cation applicable to any nonholonomic sys-
tem. We assume that a �rst collision-free path has been
computed for the robot in the global frame. In our ex-
periments, this path is computed by the motion planner
Move3D [24] based on a map of the environment. When
the robot follows this path, on-board sensors, for instance
laser scanners, detect surrounding obstacles and map them
in the global frame. If an obstacle not present in the map is
detected, it can be in collision with the initial path. If the
localization of the robot is inaccurate, or if the map is inex-
act, obstacles of the map might be seen in collision with the
initial path by the sensors. The method we propose in this
paper enables the robot to deform the initial path in order
to move it away from sensed obstacles and make the cur-
rent path collision-free (Figure 6 shows an example of path
deformed and followed by mobile robot Hilare 2 towing a
trailer). The current path thus changes along time. As a
path is a mapping from an interval of real numbers into the
con�guration space of the robot, we naturally model a path
deformation process as a mapping of two real variables s
and τ into the con�guration space. τ can be considered
as time (or more generally as an increasing function of τ),
while s is the abscissa along each path. Figure 2 illustrates
this idea.

Our contribution consists of a theoretical framework in
which a path deformation process is modeled as a dynamic
control system, of an algorithm controlling the deformation
process and of the validation of our approach by applica-
tions to two di�erent kinematic systems.

This path deformation method can be applied to obstacle
avoidance for nonholonomic systems, as well as any other
optimization problem.

The paper is organized as follows. In Section II, we pro-
pose a model of path deformation as a in�nite-dimensional
dynamic control system the state of which is a path. In
Section III, we present an iterative algorithm controlling
the deformation process to make an optimization criterion
decrease. At each step of the algorithm, a deformation is
computed in a �nite-dimensional linear-subspace (III-A).
Boundary conditions can be added to constrain the initial
and �nal con�gurations of the path to keep unchanged after
deformation (III-B). Using con�guration space potential
�elds, the optimization criterion can be related to obsta-
cles and make the deformation process avoid them (III-C).
Discretization of the deformation process implies however
deviation of the nonholonomic constraints that are not sat-
is�ed anymore. A correction of this undesirable e�ect is
proposed (III-D). Finally, in Section IV, the approach is

applied to di�erent kinematic systems.

II. Nonholonomic path deformation as a dynamic
control system

A path for a robotic system is usually represented by a
mapping from an interval of R into the con�guration space
of the system. In this section, we introduce the notion
of path deformation as a mapping from an interval of R
into the set of paths. Equivalently a path deformation is a
mapping from two intervals into the con�guration space as
explained later in this section.
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Fig. 3. Current path q(s) (in bold) and direction of deformation η(s)
along this path.

A. Admissible paths

A nonholonomic system of dimension n is characterized
by a set of k < n vector �elds X1(q),...,Xk(q), where
q ∈ C = Rn is the con�guration of the system. For each
con�guration q, the admissible velocities of the system is
the set of linear combinations of the Xi(q)'s. A path q(s)
is a smooth curve in the con�guration space de�ned over
an interval [0, S]. A path is said to be admissible if and
only if there exists a k-dimensional smooth vector valued
mapping u = (u1, ..., uk) de�ned over [0, S] and such that:

∀s ∈ [0, S] q′(s) =
k∑

i=1

ui(s)Xi(q(s)) (1)

where from now on, ′ denotes the derivative w.r.t. s.

B. Admissible path deformation

We call path deformation a mapping from a subset
[0, S] × [0,+∞) of R2 to the con�guration space of the
system:

(s, τ) → q(s, τ)

For each value of τ , s → q(s, τ) is a path. s → q(s, 0)
is called the initial path. A path deformation process can
be compared to a vibrating string of abscissa s where τ is
the time. The shape of the string varies with time τ and
is given by the curve s → q(s, τ) ∈ R2. In order to keep
notation light and intuitive, we use the same notation q to
denote con�gurations, paths and path deformations.
We are interested in deformations q(s, τ) composed of

only admissible paths. Such deformations satisfy the fol-
lowing constraint: there exists a k-dimensional vector val-
ued smooth mapping u = (u1, ..., uk) de�ned over [0, S] ×
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[0,+∞), such that ∀(s, τ) ∈ [0, S]× [0,+∞)

∂q
∂s

(s, τ) =
k∑

i=1

ui(s, τ)Xi(q(s, τ)) (2)

For each value of τ , s → u(s, τ) is the input function of
path s → q(s, τ). The above equation simply expresses
constraint (1) for each path of the deformation. As well as
a path is uniquely de�ned by its initial con�guration and
the input function, a path deformation is uniquely de�ned
by the initial con�guration q(0, τ) of each of its paths and
by the input functions ui(s, τ).
By di�erentiating (2), we get a relation between the in-

put variation ∂u
∂τ and the in�nitesimal path deformation ∂q

∂τ
when the deformation parameter τ increases:

∂2q
∂s∂τ

(s, τ) =
k∑

i=1

(
∂ui

∂τ
(s, τ)Xi(q(s, τ))

+ui(s, τ)
∂Xi

∂q
(q(s, τ))

∂q
∂τ

(s, τ)
)

We call respectively input perturbations and direction of

deformation the following vector valued functions:

v(s, τ) ,
∂u
∂τ

(s, τ)

η(s, τ) ,
∂q
∂τ

(s, τ)

η is represented in Figure 3. With this notation, the above
equation becomes :

η′(s, τ) = A(s, τ)η(s, τ) +B(s, τ)v(s, τ) (3)

where η′ = ∂η
∂s and A(s, τ) is the following n× n matrix:

A(s, τ) =
k∑

i=1

ui(s, τ)
∂Xi

∂q
(q(s, τ))

and B(s, τ) is the n × k matrix the columns of which are
the control vector �elds:

B(s, τ) =
(

X1(q(s, τ)) · · · Xk(q(s, τ))
)

According to (3), the derivative w.r.t. τ of the path
s→ q(s, τ) is related to the input perturbation s→ v(s, τ)
through a linear dynamic system. This system is in fact
the linearized system of (1) about s→ q(s, τ). For a given
path q(s, τ) of input u(s, τ) and for any input perturba-
tion v(s, τ), and any initial condition η0 = η(0, τ) we can
integrate Equation (3) w.r.t. s to get the corresponding
direction of deformation η(s, τ). A path deformation pro-
cess for nonholonomic systems can thus be considered as a
dynamic control system where
• τ is the time,
• s→ q(s, τ) is the state and
• the input is a pair (η0, s→ v(s, τ)).
as described in Figure 4. In Section III, paths will be com-
puted for discretized values of τ only.

η0 ∈ Rn

Obstacles
path def
algorithm

v ∈ C∞([0, S],Rk)

current path
q ∈ C∞([0, S],Rn)

Fig. 4. A path deformation process can be modelled as a dynamic
control system of time τ . At each time, the state is a feasible path
q, the input is a pair (η0,v) that uniquely de�nes the time derivative
of the state. The path deformation algorithm we build in this paper
can be considered as a closed-loop controller that computes the input
of the dynamic control system with respect to the current path and
a task to achieve, for instance avoiding obstacles.

C. Potential �eld and inner product

The path deformation method needs to compute at each
time τ a vector η0 and a function s→ v(s, τ) over [0, S] in
such a way that the deformation process achieves a spec-
i�ed goal. This goal is expressed in terms of a potential
value to minimize over the set of feasible paths. The po-
tential value of a path is de�ned by integration along the
path of a potential �eld U over the con�guration space. We
denote by V (τ) the potential value of path s→ q(s, τ):

V (τ) ,
∫ S

0

U(q(s, τ))ds

If the goal to achieve is to avoid obstacles, as in [22], [11],
[1], the con�guration space potential �eld is de�ned in such
a way that its value is high for con�gurations close to ob-
stacles and low for con�guration far from obstacles. Thus
paths going close to obstacles have a high potential value
and paths staying far from obstacles have a low potential
value.
The path potential variation w.r.t. τ is related to η(s, τ)

by the following expression:

dV

dτ
(τ) =

∫ S

0

∂U

∂q
(q(s, τ))T η(s, τ)ds

The principle of the path deformation method consists in
choosing (η0,v(s, τ)) in such a way that dV

dτ (τ) is negative.
Let us notice that the space of vector-valued functions de-
�ned over interval [0, S] is an Euclidean space, the inner
product of which is de�ned by:

(f |g)L2 ,
∫ S

0

f(s)T g(s)ds (4)

With this de�nition, the variation of the path potential
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value along a direction of deformation can be rewritten

dV

dτ
(τ) =

(
∂U

∂q
◦ q|η

)
L2

where ◦ denotes the composition of mappings. Let us notice
that integration is performed over variable s only. Accord-
ing to this expression, η = −(∂U

∂q ◦ q) is at equivalent L2-

norm the direction of deformation that minimizes dV
dτ (τ).

Unfortunately, this value of function η is not an admissi-
ble direction of deformation (i.e. a solution of system (3)).
A solution could be obtained by orthogonally projecting
−(∂U

∂q ◦ q) over the linear-subspace of admissible directions
of deformation. However, the projection of a vector over
an in�nite-dimensional subspace does not necessarily exist.
To overcome this problem, we will restrict the input per-

turbation to a �nite-dimensional subspace in the following
section.

III. Nonholonomic path deformation algorithm

Based on the theoretical framework established in the
previous section, we build in this section the path defor-
mation algorithm for nonholonomic systems. Starting from
an initial admissible path q(s, 0), the algorithm iteratively
computes a sequence of admissible paths s → q(s, τj) for
discretized values τj of τ where j is an integer. At each iter-
ation of the algorithm, a direction of deformation η(s, τj) is
generated based on the con�guration space potential �eld
U and a new path q(s, τj+1) is computed as follows:

q(s, τj+1) = q(s, τj) + ∆τj η(s, τj) (5)

τj+1 = τj + ∆τj (6)

where ∆τj is the discretization step. Let us notice that
the above formula is a �rst-order approximation in τ . In
the rest of this section, we describe the di�erent steps of
the algorithm. In Section III-A, we compute η(s, τj) by
restricting the input perturbation to a �nite-dimensional
subspace of functions. This restriction enables us in Sec-
tion III-B to take into account boundary conditions that
force the initial and �nal con�guration of the deformation
interval to remain unchanged. In Section III-C we explain
how to compute the direction of deformation that mini-
mizes the variation of the path potential under constant
L2-norm. The �rst order approximation (5) induces de-
viations of the nonholonomic constraints. Section III-D
addresses this issue and proposes a correction of this devi-
ation.

A. Finite-dimensional subspace of input perturbations

As explained in section II, the control variables of a
path deformation process are the input perturbation v
and the initial condition η0. s → v(s, τj) belongs to the
in�nite-dimensional space of smooth vector-valued func-
tions de�ned over [0, S]. To simplify the control of the
path deformation, we choose to restrict v over a �nite-
dimensional subspace of functions. This restriction will
make the boundary conditions introduced later in sec-
tion III-B easier to deal with. Let p be a positive integer.

We de�ne e1, ..., ep, a set of smooth linearly independant
vector-valued functions of dimension k, de�ned over [0, S]:

ei : [0, S] → Rk

Various choices are possible for the e′is (e.g. truncated
Fourier series, polynomials,...) [20], [7], [6]. For each of
these functions, we de�ne Ei(s, τj) as the solution of sys-
tem (3) with initial condition η0 = 0 and with ei(s) as
input:

E′
i(s, τj) = A(s, τj)Ei(s, τj) +B(s, τj)ei(s) (7)

Ei(0, τj) = 0 (8)

where matrices A and B are de�ned in section II-B. Let
us recall that these matrices depend on the current path
q(s, τj) of input u(s, τj) and therefore, unlike ei, Ei de-
pends on τj .
If we restrict v(s, τj) in the set of functions spanned by

the ei's, that is:

v(s, τj) =
p∑

i=1

λiei(s) (9)

where λ = (λ1, ..., λp) ∈ Rp is a vector, as (3) is linear, the
direction of deformation η corresponding to v is the same
linear combination of solutions Ei

η(s, τj) =
p∑

i=1

λiEi(s, τj) (10)

Using this restriction, the input perturbation v is uniquely
de�ned by vector λ.

B. Boundary conditions

We wish the deformation process not to modify the initial
and goal con�gurations of the path. We thus impose the
following boundary conditions:

∀j > 0, q(0, τj) = q(0, 0)
q(S, τj) = q(S, 0)

These constraints are equivalent to:

∀j > 0, η(0, τj) = 0 (11)

η(S, τj) = 0 (12)

Equation (8) and Expression (10) ensure us that the �rst
constraint (11) is satis�ed. The second constraint (12) to-
gether with Expression (10) becomes a linear constraint
over vector λ:

Lλ = 0 (13)

where L is a n × p - matrix the columns of which are the
Ei(S, τj)'s:

L =
(

E1(S, τj) · · · Ep(S, τj)
)

Let us notice that in general, the dimension of the subspace
of solutions of the above linear system is equal to p−n and
therefore p must be bigger than n. The problem is now
to choose a vector λ satisfying the above linear constraint
and generating a direction of deformation that makes the
current path move away from obstacles. We address this
issue in the following section.
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C. Direction of deformation that makes the path potential

decrease

As explained in II-C, a potential �eld U is de�ned over
the con�guration space. This potential �eld de�nes a po-
tential function V over the space of paths by integration.
Given a vector λ ∈ Rp, the variation of the path po-

tential induced by direction of deformation η de�ned by
Equation (10) is given by the following expression:

dV

dτ
(τj) =

∫ S

0

∂U

∂q
(q(s, τj))T η(s, τj)ds (14)

=
p∑

i=1

λi

∫ S

0

∂U

∂q
(q(s, τj))T Ei(s, τj)ds (15)

Let us de�ne the following coe�cients

µi ,
∫ S

0

∂U

∂q
(q(s, τj))T Ei(s, τj)ds

These coe�cients represent the variation of the path po-
tential induced by each direction of deformation Ei. With
these coe�cients, Expression (15) can be rewritten as fol-
lows:

dV

dτ
(τj) =

p∑
i=1

λiµi (16)

Thus, if we set

λi = −µi (17)

we get a deformation η(s, τj) that keeps the kinematic con-
straints satis�ed and that makes the path potential de-
crease. Indeed,

dV

dτ
(τj) = −

p∑
i=1

µ2
i ≤ 0

We denote by λ0 this value of vector λ. Nothing ensures
us that λ0 satis�es the boundary conditions (13).

C.1 Projection over the boundary condition subspace

Equation (13) states that the set of vectors λ satisfying
the boundary conditions is a linear subspace of Rp. To get
such a vector that we denote λ̄, we project λ0 over this
subspace :

λ̄ = (Ip − L+L)λ0

where L+ is the pseudo-inverse of L. As L L+ L = L, λ̄
satis�es Lλ̄ = 0. We may naturally wonder whether the di-
rection of deformation after projection η =

∑p
i=1 λ̄iEi still

makes the path potential decrease. The following proposi-
tion answers this question.
Proposition 1: for any µ ∈ Rp and any n×p - matrix L,

if λ0 = −µ and λ̄ = (Ip − L+L)λ0, then

µT λ̄ < 0
Proof:

µT λ̄ = −µTµ+ µTL+Lµ

As LL+L = L, (L+L)2 = L+L. L+L is thus the matrix
of a projection operator. As such, L+L is a positive semi-
de�nite matrix with eigenvalues 0 and 1. Therefore, for
any vector µ, µTL+Lµ ≤ µTµ and µT λ̄ ≤ 0.
Proposition 1 ensures us that η(s, τj) ,

∑p
i=1 λ̄iEi(s, τj)

is an admissible direction of deformation that satis�es the
boundary conditions η(0, τj) = η(S, τj) = 0.

C.2 A better direction of deformation

Let us recall that Equation (5) is a �rst order ap-
proximation w.r.t. τ . For this reason, ∆τj‖η‖∞ with

‖η‖∞ , maxs∈[0,S] ‖η(s, τj)‖ needs to be small. ∆τj is
thus chosen in such a way that ∆τj‖η‖∞ is upper bounded
by a positive given value ηmax. The way the λi's are chosen
in (17) is not optimal in this respect. Indeed, the goal we
aim at at each iteration is to make the path potential V
decrease at most for constant ‖η‖∞. Therefore the optimal
value of λ realizes the following minimum:

min
‖η‖∞=1

dV

dτ
(τj) = min

‖
Pp

i=1 λiEi‖∞=1

p∑
i=1

µiλi

This value of vector λ is very di�cult to determine since
‖.‖∞ is not an Euclidean norm. Instead, we compute

min
‖

Pp
i=1 λiEi‖L2=1

p∑
i=1

µiλi

which is a better approximation than (17).
The idea of the computation is to express η in a L2-

orthonormal basis in such a way that the above sum be-
comes the inner product between two vectors. Let us build
from (E1, ...,Ep) an orthonormal basis (F1, ...,Fp) using
Gramm Schmidt orthonormalization procedure. Let P be
the corresponding change of coordinates p × p - matrix
(the j-th column of P is the vector of coordinates of Fj

expressed in (E1, ...,Ep)). If we express η in (F1, ...,Fp)
instead of (E1, ...,Ep), Equation (10) becomes:

η(s, τj) =
p∑

i=1

λ⊥i Fi(s, τj)

and Equation (16) becomes

dV

dτ
(τj) =

p∑
i=1

λ⊥i µ
⊥
i =

(
µ⊥|η

)
L2 (18)

with

µ⊥i ,
∫ S

0

∂U

∂q
(q(s, τj))T Fi(s, τj)ds

and µ⊥ =
∑p

i=1 µ
⊥
i Fi. The second equality in (18) holds

since (F1, ...,Fp) is L2-orthonormal. At equivalent L2-
norm, η = −µ⊥ (i.e. λ⊥i = −µ⊥i ) is the direction of defor-
mation that minimizes dV

dτ (τj).
In fact we do not evaluate functions Fl's, but only matrix

P . The expression of η in basis (E1, ...,Ep) is given by
vector

λ = Pλ⊥ = PPTλ0 (19)
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Using expression of η in the orthonormal basis (F1, ...,Fp),
the expression in (E1, ...,Ep) of the orthogonal projection
of the above η over the sub-space of vectors satisfying the
boundary conditions (12) becomes

λ̄ = (Ip − P (LP )+L)PPTλ0

We have noticed during the development of our method,
that choosing the optimal direction of deformation makes
the method behave much better. It can be explained by
the fact that this choice makes the path potential decrease
faster and thus is more e�cient to get away from obstacles.

D. Nonholonomic constraint deviation

Approximation (5) induces a side e�ect: after a few iter-
ations, the nonholonomic constraints are not satis�ed any-
more and the path becomes non admissible. We call this
e�ect the nonholonomic constraint deviation. The goal of
this section is to correct this deviation. If a path is not
admissible, the velocity along this path is not contained in
the linear subspace spanned by the k control vector �elds
and condition (1) does not hold.

D.1 Extended dynamic system

To take into account this issue, we add for each con-
�guration q, n − k vector �elds Xk+1(q), ...,Xn(q) to the
k control vector �elds of the system in such a way that
X1(q), ...,Xn(q) span Rn. We de�ne the extended system

as the system controlled by all these vector �elds:

q′ =
n∑

i=1

uiXi(q) (20)

System (20) is not subject to any kinematic constraint. A
path q(s) of system (20) is admissible for system (1) if
and only if for any j ∈ {k + 1, ..., n} and any s ∈ [0, S],
uj(s) = 0.
In Section II, we deformed a given path, ad-

missible for (1) by perturbing the input functions
u1(s, τ), ..., uk(s, τ) of this path in order to avoid obstacles.
In this section, we consider an initial path not necessarily
admissible and we compute input perturbations that make
uk+1(s, τ), ..., un(s, τ) uniformly tend toward 0 as τ grows.
From now on, we denote by ū(s, τ) = (u1(s, τ), ..., un(s, τ))

the input function of system (20) and by v̄(s, τ) =
(v1(s, τ), ..., vn(s, τ)) the perturbation of these input func-
tions:

∀i ∈ {1, ..., n}, vi(s, τ) =
∂ui

∂τ
(s, τ)

The relation between the input perturbation v̄(s, τ) and
the direction of deformation η(s, τ) is similar as in Sec-
tion II:

η′(s, τ) = Ā(s, τ)η(s, τ) + B̄(s, τ)v̄(s, τ) (21)

but now, Ā(s, τ) and B̄(s, τ) are both n× n matrices:

Ā =
n∑

i=1

ui
∂Xi

∂q
(q) and B̄ = (B B⊥) (22)

where B⊥ = (Xk+1(q)...Xn(q)) is the matrix the columns
of which are the additional vector �elds. With this nota-
tion, (21) can be rewritten as follows:

η′(s, τ) = Ā(s, τ)η(s, τ)+B(s, τ)v(s, τ)+B⊥(s, τ)v⊥(s, τ)
(23)

where v⊥(s, τ) = (vk+1(s, τ), ..., vn(s, τ)).

D.2 Correction of nonholonomic deviation

vk+1(s, τ), ..., vn(s, τ) represent the derivative of the in-
put functions uk+1(s, τ), ..., un(s, τ) w.r.t. τ . We want
these input functions to converge toward 0 as τ grows, we
thus set:

∀i ∈ {k + 1, ..., n}, vi(s, τ) = −αui(s, τ)

where α is a positive constant number. This implies that,
as τ grows,

∀s ∈ [0, S], ui(s, τ) = e−ατui(s, 0)

and therefore the input variables along the additional vec-
tor �elds converge toward 0 exponentially. We denote by
η1 the corresponding direction of deformation for τ = τj :

η′1(s, τj) = Ā(s, τj)η1(s, τj) +B⊥(s, τj)v⊥(s, τj)(24)
η1(0, τj) = 0 (25)

D.3 Deformation due to obstacles

Following the procedure described in sections III-A and
III-C, we restrict input functions (v1, ..., vk) to the �nite di-
mensional subspace of functions spanned by (e1, ..., ep) and
we compute λ = (λ1, ..., λp) according to Equation (19).
We denote by η2 the direction of deformation correspond-
ing to these coe�cients:

η2(s, τj) =
p∑

i=1

λiEi(s, τj)

where now the Ei's are solutions of system (21):

E′
i(s, τj) = Ā(s, τj)Ei(s, τj) +B(s, τj)ei(s) (26)

Ei(0, τj) = 0 (27)

D.4 Boundary conditions

As system (23) is linear, the deformation obtained by
suming input perturbations v and v⊥ is the sum of η1
and η2. Again we want this direction of deformation not to
modify the initial and �nal con�gurations. Conditions (11)
and (12) become:

η1(0, τj) + η2(0, τj) = 0
η1(S, τj) + η2(S, τj) = 0

The �rst condition is always satis�ed. The second one can
be rewritten as an a�ne system of equations over parame-
ters (λ1, ..., λp):

η2(S, τj) = Lλ = −η1(S, τj) (28)
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where L is the matrix de�ned in Section III-B. As in Sec-
tion III-B, the vector λ obtained by Equation (19) does not
satisfy (28). We orthogonally project this vector over the
a�ne space of solutions of system (28) and we get

λ̄ = −P (LP )+η1(S, τ) + (Ip − P (LP )+L)λ

The direction of deformation:

η(s, τj) =
p∑

i=1

λ̄iEi(s, τj) + η1(s, τj)

satis�es the boundary conditions (11-12) and makes the
components vk+1, ..., vn of the velocity along additional
vector �elds decrease. Moreover, if these components are
su�ciently close to 0, the above expression of η makes the
potential due to obstacles decrease.

E. Deformation algorithm: summary

Table I summarizes the path deformation algorithm for
nonholonomic systems. The input of the algorithm is an
initial path q(s, 0), with input function u(s, 0). At each
step τ = τj , a direction of deformation η(s, τj) is computed
along the current path. This direction of deformation is
applied to the path and τ is updated.

IV. Application to different kinematic systems

We have applied the path deformation method for non-
holonomic systems described in the former sections to two
di�erent systems. In both cases, the application is a navi-
gation task for two di�erents types of nonholonomic mobile
robots : a mobile robot towing a trailer and a car-like mo-
bile robot in a cluttered and partially known environment.
The method has also been applied in a path optimization

problem. This latter application is described in [12], [13].
The problem raised was to validate the itinerary of trucks
carrying huge components of an airplane through villages
in the southwest of France.

A. Reactive obstacle avoidance for a mobile robot towing a

trailer

In this application, the robot is the unicycle Hilare 2 tow-
ing a trailer, as shown on Figure 1. During motion, a laser
scanner detects obstacles in front of the robot (behind if
the robot moves backward) and maps these obstacles in the
global frame of the environment. If a collision is detected
between the current path and obstacles, an interval of de-
formation centered on the �rst con�guration in collision of
the path and not containing the current con�guration of
the robot is chosen. The deformation algorithm is then ap-
plied to this interval until the collision has disappeared. If
necessary, the robot stops before reaching the interval of de-
formation. Of course, the interval of deformation changes
when the robot moves ahead and discovers new collisions.
[2] describes with more precision how the path deformation
and the path following tasks operate simultaneously. Fig-
ure 6 gives an example of path simultaneously deformed
and followed by the robot.

Algorithm : Path deformation for nonholonomic systems

/* current path = initial path */
j = 0, τj = 0

while q(s, τj) in collision {
compute Ā(s, τj) and B̄(s, τj) for s ∈ [0, S]

/* correction of nonholonomic deviation */
for i in {k + 1, ..., n} {

compute ui(s, τj)
compute vi(s, τj) = −αui(s, τj) for s ∈ [0, S]

compute η1(s, τj) using (24)

/* potential gradient in con�guration space */
for i in {1, ..., p} {

compute Ei(s, τj) by integrating (26)
}
compute ∂U

∂q
(q(s, τj)) for s ∈ [0, S]

for i in {1, ..., p} {
compute λ0

i = −
R S
0

∂U
∂q

(q(s, τj))
T Ei(s, τj) ds

}

/*orthonormalization of (E1, ...,Ep) */
compute matrix P using Gramm Schmidt procedure

/*projection of λ over boundary conditions */
compute λ̄ = −P (LP )+η1(S, τj) + (Ip − P (LP )+L)PP T λ0

/* compute and apply deformation */
compute η(s, τj) = η1(s, τj) +

Pp
i=1 λ̄iEi(s, τj) for s ∈ [0, S]

if ‖η‖∞ > ηmax then
∆τj = ηmax/‖η‖∞

else
∆τj = 1

τj+1 ← τj + ∆τj

q(s, τj+1)← q(s, τj) + ∆τj η(s, τj) for s ∈ [0, S]
j ← j + 1

}

TABLE I
Path deformation algorithm for nonholonomic systems

In the following paragraphs, we give expressions of the
linearized system, of the input perturbation functions ei's
and we give more details about the potential �eld generated
by obstacles. We provide also a few experimental results.
We invite the reader to see more experimental results on
the web-page of the demo [28].

A.1 Linearized system

A con�guration of our system is represented by a vector
q = (x, y, θ, ϕ) where (x, y) and θ are respectively the posi-
tion and orientation of Hilare 2 and ϕ is the angle between
the robot and the trailer. The control vector �elds of this
system are

X1 =


cos θ
sin θ

0
− 1

lt
sinϕ

X2 =


0
0
1

−1− lr
lt

cosϕ


where lr (resp. lt) is the distance between the center of the
robot (resp. the trailer) and the trailer connection. The
input functions of the system are u1 and u2 the linear and
angular velocities of the robot. To get a basis of R4 at each
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con�guration q, we de�ne two additional vector �elds:

X3 =


− sin θ
cos θ

0
0

X4 =


− sin(θ + ϕ)
cos(θ + ϕ)
−lt − lr cosϕ

−lt


Let us be given a current path, not necessarily admissible,
q(s) = (x(s), y(s), θ(s), ϕ(s)) de�ned by input functions
u1(s), u2(s), u3(s), u4(s):

q′(s) =
4∑

i=1

ui(s)Xi(q(s))

For this path, matrices Ā(s) and B̄(s) de�ning System (21)
have the following expressions:

Ā(s) =


0 0 −u1sθ − u3cθ − u4cψ −u4cψ

0 0 u1cθ − u3sθ − u4sψ −u4sψ

0 0 0 u4lrsϕ

0 0 0 −u1cϕ+u2lrsϕ
lt



B̄(s) =


cθ 0 −sθ −sψ
sθ 0 cθ cψ
0 1 0 −lt − lrcϕ

− 1
lt
sϕ −1− lr

lt
cϕ 0 −lt


where to make notation shorter, cθ = cos θ, sθ = sin θ,
cϕ = cosϕ, sϕ = sinϕ, cψ = cos(θ + ϕ), sψ = sin(θ + ϕ).

A.2 Subspace of input perturbations

The input space is of dimension 2. We have chosen func-
tions ei's in such a way that they span the sub-space of
truncated Fourier series:

e1(s) = (1, 0)T e2(s) = (0, 1)T

e3(s) = (cos( 2πs
S ), 0)T e4(s) = (0, cos( 2πs

S ))T

e5(s) = (sin( 2πs
S ), 0)T e6(s) = (0, sin( 2πs

S ))T

...
...

e4q−1(s) = (cos( 2qπs
S ), 0)T e4q(s) = (0, cos( 2qπs

S ))T

e4q+1(s) = (sin( 2qπs
S ), 0)T e4q+2(s) = (0, sin( 2qπs

S ))T

where q is the maximal order of the truncated Fourier se-
ries and p = 4q + 2. The main advantage of this basis
is that a small value of q produces smooth path deforma-
tion suitable for avoiding a big obstacle in the way of the
robot, whereas a bigger value of q is more e�cient in highly
cluttered environment like corridors.

A.3 Obstacle potential �eld

During motion, obstacles are detected by the laser scan-
ners. Each sensor scans an horizontal plane and returns at
most 360 points.
If Pi is an obstacle point, we denote by νi(M) the poten-

tial �eld in the plane generated by Pi, where M is a point
in the plane and d is the distance between M and Pi:

νi(M) = 1
d+d0

+ d
(d1+d0)2

if 0 ≤ d ≤ d1

νi(M) = 1
d1+d0

+ d1
(d1+d0)2

if d > d1

(R)i

PiT

R

f

i(T)f

Fig. 5. Con�guration space potential �eld generated by an obstacle
point Pi.

d0 < d1 are constant distances. Let fi(M) = −∇νi(M)
be the force in the plane deriving from this potential. The
norm of this force �eld w.r.t. the distance to Pi is:

‖fi(M)‖ = 1
(d+d0)2

− 1
(d1+d0)2

if 0 ≤ d ≤ d1

‖fi(M)‖ = 0 if d > d1
(29)

Let us notice that each obstacle point generates a force up
to distance d1 in the plane. Let R(q) and T (q) be the
closest points to Pi on the robot and on the trailer. The
con�guration space potential �eld implied by Pi is de�ned
by evaluating the plane potential �eld at R(q) and T (q)
(Figure 5):

Ui(q) = νi(R(q)) + νi(T (q)) (30)

If Pi is inside the robot or inside the trailer the correspond-
ing term in Ui is set to 0.
The con�guration space potential �eld is de�ned as the

sum of the potential �elds relative to each obstacle point:

U(q) =
∑

i

Ui(q)

The gradient of the potential �eld is obtained by di�eren-
tiating (30) w.r.t. the con�guration variables (x, y, θ, ϕ).

∂Ui

∂q
(q) = ∇νi(R(q))

∂R

∂q
(q) +∇νi(T (q))

∂T

∂q
(q)

= −fi(R)
∂R

∂q
− fi(T )

∂T

∂q

A.4 Experimental Results

Figure 6 gives a typical example of application of the
path deformation method to Hilare 2 towing a trailer. In
this example, a path is computed by a motion planner given
a map of the environment. An obstacle not represented in
this map lies on the path computed by the planner. This
obstacle is detected and the robot deforms the path while
following the collision-free part of it. Let us notice that due
to localization errors, the obstacles detected by the sensor
are slightly di�erent from the obstacles in the map. The
path deformation method enables the robot to achieve the
navigation task even with poor localization.
During summer 2003, the robotics building of LAAS-

CNRS was renovated. During this period, pieces of furni-
ture were placed in the corridors. We took advantage of
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Fig. 6. A backward path computed and executed by the mobile
robot Hilare 2 towing a trailer. Red dots are obstacles detected by a
laser scanners (in blue) mounted on the trailer. An unexpected box
lies on the path planned by the robot. The robot deforms the path
while moving and reaches the goal. Let us notice that the interval
of deformation changes each time a new collision is detected. For
instance between snapshot 2 and 3, the �rst con�guration in collision
has changed, so has the interval of deformation.

these real conditions to test our path deformation method.
We planned a path without taking into account the new
obstacles and we asked our robot to adapt and follow this
path. Figure 7 displays the result of this experiment.

B. Reactive obstacle avoidance for a car-like mobile robot

We have applied the path deformation method to the
mobile robot Dala, an ATRV displayed on Figure 8 in an
outdoor environment. This mobile robot is a di�erential-
driven robot: rotation is performed by applying di�er-
ent velocities to the right and left wheels. To avoid too
much slipping, we consider Dala as a car-like robot with
a bounded virtual steering angle. A con�guration of the
robot is thus represented by a vector q = (x, y, θ, ϕ) where
(x, y) and θ are respectively the position and orientation of
Dala and ϕ the virtual steering angle. The input perturba-
tion functions ei's are similar to the Hilare-trailer case in

Fig. 7. Due to renovation, pieces of furniture were placed in the
corridors of LAAS-CNRS (top). We planned a path without taking
into account these new obstacles (bottom left) and we ran our path
deformation method on the mobile robot Hilare 2 towing a trailer.
The method was successful and produced a collision free path (bottom
right).

Section IV-A.2. The control vector �elds of Dala are the
following:

X1 =


cos θ
sin θ
tan ϕ

l
0

X2 =


0
0
0
1


and the additional vector �elds are:

X3 =


− sin θ
cos θ

0
0

X4 =


0
0
1
0


We do not give expressions of matrices Ā and B̄ they can
be easily deduced from the above vector �elds.
The obstacle potential �eld computation is also similar,

except that we now consider the steering angle bounds as a
possible obstacle from which the robot must move away. A
force is thus computed as a function of the steering angle,
in a similar way as Equation (29). The value of the force
increases when the angle gets closer to the bounds and
prevents the steering angle to go beyond these bounds.

B.1 Experimental results

Figure 9 presents an example of initial path in collision
and iteratively modi�ed by our algorithm until collisions



10

have disappeared. Figure 10 displays the input functions
corresponding to each iteration of the deformation process
displayed in Figure 9.

V. Conclusion and future work

In this paper, we have described a novel and generic
approach to path deformation for nonholonomic systems.
This approach has been applied to the problem of mobile
robot navigation but is suitable for other path optimization
problems related to nonholonomic systems.
In a future work, we are going to work on the extension of

this method to systems with drift. This natural extension
of the method will enable us to take into account bounds
on the velocity of the system by including the velocities in
the state-space of the acceleration-controlled corresponding
system.
Acknowledgment: This work has been partially sup-

ported by the European Project MOVIE (IST-2001-39250)
and by the CNRS interdisciplinary program ROBEA.
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θ
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(x,y)

Fig. 8. Mobile robot ATRV Dala as a car-like robot: a nonholonomic
system of dimension 4 with 2 nonholonomic constraints.

Fig. 9. Two obstacles lie on the path planned by the robot Dala
(top). The path is iteratively deformed (intermediate) until the path
is collision-free (bottom).

u 3 u 4

u 1

u 1

u 4u 3
u 2

u 1

u 1

u 2

u 2

u 3 u 4

u 2

u 3 u 4

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

Fig. 10. Input functions ui(s) corresponding respectively to the
initial path and to several steps of the deformation process. u1 and
u2 are perturbated in order to avoid the obstacles. We notice that
input functions u3 and u4 along the additional vector �elds remain
very close to 0.


