

Florent

A short introduction to Python

Florent Lamiraux
CNRS/LAAS

October 8, 2014

Why Python ?

● Readability and expressiveness,
● high level features (lists, sets, mappings,...),

● user friendly
● automatic allocation and garbage collecting,
● huge standard library (regexp, numpy,...),
● dynamic typing,

● glue for many applications
● Python/C API,
● Bindings for many tools (CORBA, OpenCV,...)

● Object oriented
● Efficiency

● Compilation on the fly

Documentation and tutorials

● Python 2: https://docs.python.org/2
● Python 3: https://docs.python.org/3

https://docs.python.org/2
https://docs.python.org/3

Syntax

● One instruction per line, except in case of opening
symbol ”””,(,f,[: line ends up at closing symbol.

● Blocs are defined by 4 space indentations,
● semicolon allows to put several instructions on the

same line,
● backslash allows to extend an instruction on the

following line.
● # for comments,

● instruction pass does nothing

String - literal

● delimited by simple or double quotes
● examples

print ” string between double quotes.”

print ’ string between double quotes.’

print u’ unicode string.’
● from python 3.x on, print becomes a function.

● ” ” ” allows to define a multiline string.

Numeric types - literal

● integer
● OS size or long integer without bound,
● automatic conversion.

● floating point numbers
● OS size for double

● complex numbers
● 1.+2.5j

● Boolean: True or False
● None : non-typed value meaning no value.

Numeric types - operators

● +, - * / the same as in C

● // division between integers

● % modulo

● divmod(x,y) returns a pair (x//y, x%y)
● x**y the same as pow(x,y)

Conversions

● int(x) convert to integer,

● long(x) convert to long integer,

● float(x) convert to float,

● complex(x,y) create complex number x+yj,
● str(x) convert to a string.

Variables

● No declaration. Variables are defined at affectation with =

x = 25

text = ’ My text’
● a variable can change type during execution:

● x = ’ My text’
● Multiple affectation

● x = y = 0
● Parallel affectation

x, y = 10, 20
● reading a non-defined variable raises an exception

>>> print z

NameError: name ’ z’ is not defined

Tuples and lists

● Tuples and lists are iterable containers
● access by index starting from 0,
● elements can be of different types.

● lists are defined by [],

>>> L = [10, 'toto', 20]

>>> L[1]

'toto'
● tuple are defined by () and are not modifiable

>>> T = (10, 'toto', 20)

>>> T[1] = 2

TypeError: 'tuple' object does not support item assignment

Tuples and lists

● Function len() returns the size

>>> L = [10, 'toto', 20]

>>> len(L)

3
● Function min() and max() return the min and max values

>>> print (min(L),max(L))

(10,'toto')
● sorted(sequence) return a sorted iterator of the sequence

>>> for i in sorted(L):

>>> print i

10

20

'toto'

Tuples and lists

● in, not in test whether an element belongs to a sequence

>>> if 10 in L: …
● ==, <, >, <=, >=, != lexicographic comparison:

>>> (5,3,1) < (5,2,10)

False
● count(value) method returns the number of occurrences of
value in the sequence

● index(value) method returns the index of the first
occurrence of value in the sequence, raises an exception if
value is not in the sequence

Modifying a list

● L.append(x) add element x at end of list L.
● L1.extend(L2) add list L2 at the end of list L1.

● L.insert(i, x) insert x at position i.

● del L[i] remove value at position i.
● L.pop(i) remove and return value at position i
● L.sort() sort a list,

● list(sequence) convert a sequence into a list

● tuple(sequence) convert a sequence into a tuple.

Slices

● L[i:j:k] extract the sub-sequence starting at
i ending at j-1, by steps of k.

● if k not specified, k=1,

● if j not specified, up to end of list,

● if i not specified, i=0,

● if i or j < 0, from end of list

● if j<i, empty sequence,

● if i or j out of range, replaced by beginning or end.

Slices

>>> L=[0,10,20,30,40,50,60,70,80,90]

>>> L[2:8]

[20, 30, 40, 50, 60, 70]

>>> L[2:8:2]

[20, 40, 60]

>>> L[8:]

[80, 90]

>>> L[::3]

[0, 30, 60, 90]

>>> L[-3:-1:]

[70, 80]

>>> L[-3:]

[70, 80, 90]

>>> L[::-1]

[90, 80, 70, 60, 50, 40, 30, 20, 10, 0]

Slices

● Slices and parallel affectation

a,b=L[2:4] equivalent to a=L[2];b=L[3]
● Affectation with a sequence or parallel affectation of

different size

>>> L[:3]=('a','b') #affectation from a tuple

>>> L[-2:]='y','z' #parallel affectation

>>> L

['a', 'b', 30, 40, 50, 60, 70, 'y', 'z']

0,10,20 replaced by 'a','b'; 80,90 by 'y','z'.

Lists and copy

● By default, lists are not copied except when slicing

>>> L=[0,10,20,30,40,50,60,70,80,90]

>>> L2=L

>>> L3=L[::]

>>> L2[3]='copy'

>>> L3[4]='copy'

>>> L

[0, 10, 20, 'copy', 40, 50, 60, 70, 80, 90]
● L2 is a reference to L while L3 is a copy of L.

Dictionary

● Mapping (key, value)
● key can be any immutable object,
● value can be any object.

● items() method returns a list of tuples
(key,value),

● keys() method returns the list of keys,

● values() method returns the list of values,

● copy() method returns a copy of the dictionary.

Dictionary
● Mapping (key, value)

● key can be any immutable object
● value can be any object

>>> D={}

>>> D['name']='Lamiraux'

>>> D[(7,'avenue du Colonel Roche')]='LAAS'

>>> D[(14,'avenue Edouard Belin')]='CNRS-DR14'

>>> D

{(7, 'avenue du Colonel Roche'): 'LAAS', 'name': 'Lamiraux', (14, 'avenue Edouard Belin'):
'CNRS-DR14'}

>>> D[(14,'avenue Edouard Belin')]

'CNRS-DR14'

>>> for k,v in D.items():

>>> print k,v

(7, 'avenue du Colonel Roche') LAAS

name Lamiraux

(14, 'avenue Edouard Belin') CNRS-DR14

Set

● Represent sets in the mathematical meaning
● created by set(),
● add() method adds an element,

● remove() method removes an element,

● operators in,<,>,<=,>=,-,|,&,^,
● methods isdisjoint, issubset, issuperset,
union, intersection, difference,
symmetric_difference, copy

Set

>>> S1=set([1,2,3,4,5,6]) # or S1={1,2,3,4,5,6} from python2.7 on

>>> S2=set([5,6,7,8])

>>> S1.union(S2)

set([1, 2, 3, 4, 5, 6, 7, 8])

>>> S1.intersection(S2)

set([5, 6])

>>> 5 in S1

True

>>> S2-S1

set([8, 7])

>>> S1^S2

set([1, 2, 3, 4, 7, 8])

Frozenset

● Immutable set,
● Can be used as dictionary key (unlike sets)

● created by frozenset().

String

● Object belonging to class str or unicode
● Can be handled as tuple of characters,

● lower(), upper(), capitalize() change the case

● replace(old,new[,count]) replace occurences of old by new,
● find(sub[,start[,end]]) find first occurrence of sub.
● strip([chars]) erase spaces or chars at beginning and end of

string, also rstrip, lstrip
● split(sep) extract elements of a string separated by sep

>>> '10,20,30'.split(',')

['10', '20', '30']

String formatting

● string%parameters
● Parameters can be

– a value
– a sequence,
– a dictionary

>>> s = "Mr %s is %i year old."

>>> s%('Dupond', 30)

'Mr Dupond is 30 years old.'

>>> d={'name':'Durand', 'age':45}

>>> s='Mr %(name)s is %(age)d year old'

>>> s%d

'Mr Durand is 45 year old'

String formatting

● Formatting flags
– %s display result of str()
– %r display result of repr()
– %d,i display decimal integer

– %f,g,e display floating point number

– %x,X hexadecimal

– %o octal

Instruction if

if boolean_expression :
indented_conditional_instruction

or

if boolean_expr : conditional_instr
● Example

if i>8:
print('i is greater than 8.')
if i > 22: print('i is greater than 22.')

Instruction if
● Conditional expressions can be built with boolean

operator

and, or, not
● with and and or expressions are evaluated only if

necessary.

Instructions if, elif, else

if X>0:
print 'x positive'

elif X==0:
print 'x equal 0'

else:
print 'x negative'

Conditional expression

● value if condition else other value

● example

'positive' if X >= 0 else 'negative'

Instruction while
● Iterate while a condition

is true

i=0

while i<5:
print i
i+=1

else: print 'end'
● break get out of the

loop,

● continue go to next
iteration.

0

1

2

3

4

end

Instruction for
● Iterate over a sequence

L=[0,10,20,30]

for e in L:
print e

● Iterate over a sequence
of integers

for i in range(0,5):
print i

0

10

20

30

0

1

2

3

4

Instruction for
● Don't do that

L=[0,10,20,30]

for i in range (len (L)):
print L [i]

● but instead

L=[0,10,20,30]

for i in L:
print L

List comprehension

● Syntax:

expression for target in sequence if condition

● “ if condition” is not mandatory

● Example

>>> L=[x**2 for x in xrange(10) if x%2==0]

>>> L

[0,4,16,36,64]

Function

● Functions are objects that can be manipulated as such
● Definition

def function_name(arg1, arg2):

 …

 return …
● Call

function_name(x,y) or

function_name(arg1=x,arg2=y)
● Example

>>> def sum(a,b):

>>> c=a+b

>>> return c

>>> A=2; B=3; sum(A,B)

5

Lambda function

● A practical way of defining function

function_name = lambda x1,x2,...: expression
equivalent to

def function_name(x1,x2,...):

 return expression
● Example

>>> square = lambda x: x**2

>>> square(3)

9

Function

● Note that functions are objets, as such
– they can be put into variables, sequences,...
– They can be returned by a function.

● Example

>>> def add_constant(constant):

>>> return lambda x:x+constant

>>> add_three = add_constant(3)

>>> add_three(5)
8

function zip
● zip(list1,list2) return a list of tuples of two elements

composed of elements of list1 and list2.

>>> L1=(10,20,30)

>>> L2=[100,200,300,400]

>>> zip(L1,L2)

[(10, 100), (20, 200), (30, 300)]

>>>for i,j in zip(L1,L2):

>>> print i,j

10 100

20 200

30 300

Operations on sequences

map(fct, seq) apply fct to each element of seq.

filter(fct,seq) build the sequence of elements for which fct
returns True.

reduce(fct, seq, init) apply fct of two arguments cumulatively to
the elements of seq so as to reduce it to a single value.

>>> L=(10,20,30)

>>> map(lambda x:x**2,L)

[100, 400, 900]

>>> filter(lambda x:True if x<25 else False, L)

(10, 20)

>>> reduce(lambda x,y:x+y**2, L, 0)

1400 (0 + 10*10 + 20*20 + 30*30)

Modules
● A module is

– a python file
– or a shared object,
– or a directory containing a file named __init__.py

● import mod command import all objects defined in file mod.py.

● Objects defined in mod.py are accessible through namespace mod.
● Example

#file mod.py

a=0

>>> import mod

>>> mod.a

0

>>> import mod as m

>>> m.a

0

>>> from mod import a

>>> a

0

Class

● A class may have
– a constructor,
– instance methods and members,
– class methods and members,

● Definition

class class_name :

 class declaration
● Construction of an instance

>>> a = class_name()

Instance method

● function that applies to the object that calls it
● the first parameter is the object and is usually denoted

by self
class class_name:

 def method(self):

 self.x = 3

>>> a = class_name()

>>> a.method()

>>> a.x

3

Constructor

● Constructor is a method denoted by __init__ and
called at instance creation

● It can have parameters and usually defines
instance members.

class class_name:

 def __init__(self, a):

 self.A = a

 ...

Class member

● Shared by all instances of the class

class class_name:

 A=0
● access

class_name.A
read-only access through instances. Modification through instance yields the creation
of an instance member

>>> obj1=class_name()

>>> obj1.A

0

>>> obj1.A=1

>>> obj2=class_name()

>>> obj2.A

0

Class method

● Method that apply to a class and not to an instance

class class_name:

 @staticmethod

 def method():
 …

● access

class_name.method or

a = class_name()

a.method()

Class inheritance

● Allow to create a class that inherits another class
methods and members,

● methods can be redefined
● constructor may call parent constructor

class child (parent):

 def __init__(self):

 parent.__init__(self)

 …
● It is recommanded to make base class derive from
object. Class is thus said “new style” class.

Special methods

● __lt__, __le__, __eq__, __ne__, __gt__,
__ge__(self,other) overload operators <, <=,
==, !=, >, >=

● __str__(self) define the conversion of the object
as a string (print).

Exceptions

● Errors in python are dealt with using exceptions
● Some are defined by the language, but exception

classes can be defined
● Example

>>> a

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'a' is not defined

Exceptions

● Exceptions derive from BaseException class and
more frequently from Exception sub-class.

● It is possible to catch an exception in order to
handle an error

● Exceptions not caught terminate execution.

Catching exceptions

● try/except catches exceptions

● Example

try:

 f = open('myFile', 'r')

except IOError as exc

 print exc
● In this example, only IOError are caught.

Defining new exceptions

Class MyException(Exception):

 def __init__(self, msg):

 self.message = msg

 def __str__(self):

 return self.message
● Raising an exception

try:

 raise MyException('this is my error')

except MyException as exc:

 print exc

try, except, else, finally
● else clause is executed if no exception is caught,

● finally clause is executed whatever happens:

def divide(x,y):

 try:

 result = x/y

 except ZeroDivisionError:

 print 'division by 0'

 else:

 print ('result is %s'%result)

 finally:

 print ('finally')

Inline help and docstring
● In interactive mode, help can be invoked on any symbol

 class A (object):
 """

 This is the documentation of class A

 """

 def __init__ (self):

 """

 This is the documentation of A constructor

 """

 pass

Inline help and docstring
● In interactive mode, help can be invoked on any symbol

 >>> help (A)
 Help on class A in module __main__:

 class A(__builtin__.object)

 | This is the documentation of class A

 |

 | Methods defined here:

 |

 | __init__(self)

 | This is the documentation of A constructor

 |

 | --

 ...

Inline help and docstring
● In interactive mode, help can be invoked on any symbol

 >>> help (A)
 ...

 | --

 | Data descriptors defined here:

 |

 | __dict__

 | dictionary for instance variables (if defined)

 |

 | __weakref__

 | list of weak references to the object (if defined)

(END)

__dict__
● Notice that most objects have an internal dictionary

named __dict__

 >>> A.__dict__.keys ()

 ['__dict__', '__module__', '__weakref__', '__doc__', '__init__']
 >>> A.__dict__['__module__']

 '__main__'
 >>> A.__module__

 '__main__'

Coding style: PEP 8
● 4-space indentation, no tabs,
● wrap lines so that they don’t exceed 79 characters,
● use blank lines to separate functions and classes, and larger

blocks of code inside functions,
● use docstrings.
● use spaces around operators and after commas, but not

directly inside bracketing constructs: a = f(1, 2) + g(3, 4),
● Name your classes and functions consistently

– CamelCase for classes,
– lower_case_with_underscores for functions and methods,
– use self as the name for the first method argument

● Only use Plain ASCII

Exercise 1
● Define two lists: l1 with names and l2 with ages,

● Define a function taking two arguments: a name
and an age and print

Mr name is age year(s) old.
● Use this function to print the above sentence for

each name in l1 with ages in l2.

Exercise 2

Compute prime numbers up to 1000:

1. using functions
– define a function that returns the set of multiples not

greater than 1000 of an integer,
– From the set of integers, successively remove multiples

of 2, 3, 5, 7...

2. using list comprehension

Exercise 3

● Write a class Vector with the following features:

– the constructors takes as input a tuple,

– operators +, * return sum and inner product of 2 vectors,

– exception is raised when size mismatch.

● Hint
– to define operators +, *, define methods __add__ and
__mul__

Manipulating files

● read (n) reads n characters

● write (s) writes string s

● readline () reads one line

● close () closes the file

● Instruction for reads a file line by line:

f = open('myFile', 'r')

for line in f:

 print (line)

Instruction with
● with automatically calls methods __enter__()

and __exit__() even if an exception is raised.
● Class file implements these methods. Thus, we can

write

with open('myFile', 'r') as f:

 for line in f:

 print (line)

● No need to call close () anymore.

Selected parts of the library

System-specific parameters and
functions

● Module sys
– sys.path: A list of strings that specifies the search path

for modules (command import). Initialized from the
environment variable PYTHONPATH, plus an installation-
dependent default.

Miscellaneous operating system
interfaces

● Module os
– os.environ: a dictionary representing the string

environment. For example, environ['HOME'] is the
pathname of your home directory (on some platforms),
and is equivalent to getenv("HOME") in C.

– os.getenv(varname[,value]): return the value of the
environment variable varname if it exists, or value if it
doesn’t. value defaults to None.

Regular expression operations
● Module re provides regular expression matching

operations similar to those found in Perl

>>> import re

>>> m = re.search ('(\d*)x(\w*)', '12xy')

>>> m.groups()

('12', 'y')
● Note that manipulation on strings is already

powerful.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 59
	Slide 62
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

