
Building Dependable COTS

Microkernel-based Systems

using MAFALDA

Jean-Charles Fabre, Manuel Rodríguez, Jean Arlat, Frédéric Salles
and Jean-Michel Sizun

LAAS-CNRS
Toulouse, France

PRDC-2000, UCLA, Los Angeles, CA, USA — 18-20 December 2000

Problem statement

• Building executive supports
for dependable systems, two options:
– Development from scratch is complex & expensive
– Use of commercial components is questionable

syn sch mem com• Main tendency for embedded systems
– Use of COTS componentized microkernels

syn sch comnew
– Define a specific instance for the application

Microkernel instance

application

– System development : two options

Microkernel instance

application

Middleware layer

Outline

• The objective of MAFALDA
– Failure mode analysis
– Development of fault containment wrappers

• Description of the tool
– Organization
– Type of measurements

• MAFALDA in action
– Campaign definition
– Conducting experiments

• Lessons learnt Rack of target
machines

Host
Machine

controlling the
experiments

MAFALDA
Microkernel
Assessment by
Fault injection
AnaLysis and
Design
Aid

Objectives of MAFALDA

• Characterization by SWIFI
(S/W Implemented Fault Injection)

– Identification of failure modes
– Evaluation of error detection coverage
– Identification of propagation channels
– Assessment of interface robustness

• Wrapping framework
– Definition of formal wrappers
– Definition of a reflective

implementation framework
– Application to both white-box

& black-box candidates

• Evaluation of the wrapped microkernel instance

Rack of target
machines

Host
Machine

controlling the
experiments

MAFALDA
Microkernel
Assessment by
Fault injection
AnaLysis and
Design
Aid

Characterization of the failure modes

• interface robustness
• error detection mechanisms

• corruption of input data
• corruption of microkernel

code & data segments

• behavior of a functional component
• error propagation between components

Evaluation

Fault model

Injection targets

Observation

Fault

microkernel interface

SYN COM MEM

SYN COM MEM
Fault

Error propagation

Microkernel components

Application
level

...

...

Workload
processes

• kernel-call parameters
• microkernel components

Fault types

• bit-flip
• random selection

• statistics
• raw data (a posteriori in-deep analysis)

Results

Fault containment wrappers

• Principles and basic techniques

– Encapsulation of weak components

– Modeling microkernel functional classes

– On-line verification of expected properties

• Implementation of generic wrappers

– Principle

• Verification of executable assertions

• Verification of formal expressions (model-checking)

– Implementation based on the notion of reflective component

• Interception of system calls and internal events

• Some internal information is made observable from outside

• Microkernel + observation/control = reflective microkernel

Description of the tool

Failure
modes

Raw detailed data
for later analysis

Off-the-shelf
spreadsheet

All steps:
Oracle generation
Experiments
interpretation

Graph
mgr.

Host machine

Campaign_FD
Workload_FD

controler

Target machines

Reflection

Wp1Wp2Wp3

COTS
Microkernel

metakernel
WrappingInterception Injection

Internal
Function
Call

Exp. resultsLog. files

Description of the tool

Graph
mgr.

Host machine

Campaign_FD
Workload_FD

controler

Target machines

Reflection

Wp1Wp2Wp3

COTS
Microkernel

metakernel
WrappingInterception Injection

Internal
Function
Call

Exp. resultsLog. files

Verfication
of executable assertions

Introspection
Intercession

Interception
of kernel-calls
including parameters
and some internal
function calls

Bit-flip:
parameters,
code & data
segments

Campaign outputs

µkCjµkCi

Microkernel

Application / middleware

Corruption
Interne n Internal detection

u Error Status
u Exceptions

n Executive hang

n Application failure
u Erroneous results
u Application hang

Error

Propagation

Error
Propagation

S
e
v
e
r
i
t
y

Application
Corruption

API

Application
Oracle

Wpi
Wpj

Sample of measures

MAFALDA in action

Running experiments: the oracle

Running experiments: fault injection

Running experiments: results

Lessons learnt (1-3)

• Workload definition and oracle
– Generic workload / component ➡ design, programming flaws

– Specific workload / application ➡ failure modes (oracle)

• Fault injection
– Selection: random vs. predefined location of the bit-flip

– Kernel injector: debugging features of modern microprocessors

– Parameter injector: interception of kernel-calls
(library-based vs. trap-based µkernel)

• Assertions and wrappers
– Formalize the expected behavior from the integrator viewpoint

– Performance: tradeoff between modeling and runtime overhead

– Temporal logic expressions interpreted on-line by a model checker

Lessons learnt (4-6)

• Raw data analysis
– Analysis of logged data ➡ identification of program flaw

– User-defined semantics of the failure modes

• Interpretation of results
– One campaign targets a microkernel instance & an activation profile

– Variability of the results:
• Stand-alone version vs. Posix-based version
• Reactive application vs. static application

• Target system evolution
– A slightly new instance ➡ new campaign needed

– Is the new release/version acceptable?

– Is the new instance compatible with architectural solution?

Lessons learnt (7)

• Integrator’s vs. supplier’s viewpoint

– Integrator

• Weaknesses revealed

• Decision: reject or encapsulate
» Appropriate wrappers
» Tradeoffs measurements
» Implementation: reflective framework

– Supplier

• identification of bugs not revealed by standard benchmarking
activities ➡ product improvement

• Implementation of external error detection mechanisms:
» Development of the reflection module
» Mechanisms left open to the integrator

Conclusion

• Experiments
– Chorus ClassiX

• Failure mode analysis and wrapping (SYN & SCHED)

• Source code ➡ implementation of the reflective framework

– LynxOS

• Only failure mode analysis on a black-box instance

• Metainterface delivered to the supplier

• Current work and perspective

– Characterization: extension of MAFALDA to real-time issues

– Wrapping: formal description in temporal logic + on-line model checking

– Implementation: reflective framework

Thank you!

Jean-Charles Fabre, Manuel Rodríguez, Jean Arlat, Frédéric Salles
and Jean-Michel Sizun

LAAS-CNRS
Toulouse, France

PRDC-2000, UCLA, Los Angeles, CA, USA — 18-20 December 2000

