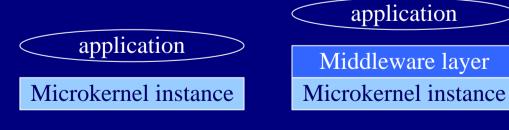
Building Dependable COTS Microkernel-based Systems using MAFALDA

Jean-Charles Fabre, Manuel Rodríguez, Jean Arlat, Frédéric Salles and Jean-Michel Sizun

LAAS-CNRS Toulouse, France


PRDC-2000, UCLA, Los Angeles, CA, USA — 18-20 December 2000

Problem statement

- Building executive supports for dependable systems, two options:
 - Development from scratch is complex & expensive
 - Use of commercial components is questionable

• Main tendency for embedded systems

- Use of COTS componentized microkernels
- Define a specific instance for the application
- System development : two options

Outline

The objective of MAFALDA

- Failure mode analysis
- Development of fault containment wrappers

Description of the tool

- Organization
- Type of measurements

MAFALDA in action

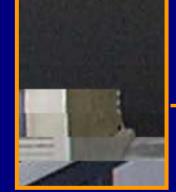
- Campaign definition
- Conducting experiments
- Lessons learnt

Rack of target machines

MAFALDA Microkernel Assessment by Fault injection AnaLysis and Design Aid

Host Machine controlling the experiments

Objectives of MAFALDA


Characterization by SWIFI

(S/W Implemented Fault Injection)

- Identification of failure modes
- Evaluation of error detection coverage
- Identification of propagation channels
- Assessment of interface robustness

Wrapping framework

- Definition of formal wrappers
- Definition of a reflective implementation framework
- Application to both white-box
 & black-box candidates

Rack of target machines

MAFALDA Microkernel Assessment by Fault injection AnaLysis and Design Aid

Host Machine controlling the experiments

• Evaluation of the wrapped microkernel instance

Characterization of the failure modes

Evaluation

- interface robustness
- error detection mechanisms

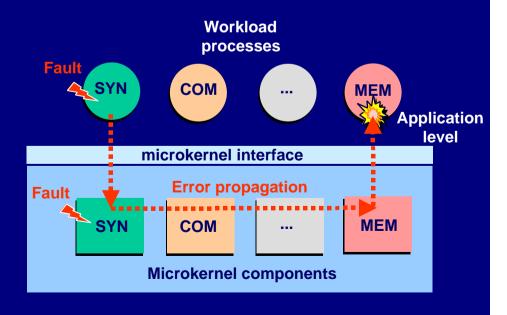
Injection targets

- kernel-call parameters
- microkernel components

Fault model

- corruption of input data
- corruption of microkernel code & data segments

Fault types


- bit-flip
- random selection

Observation

- behavior of a functional component
- error propagation between components

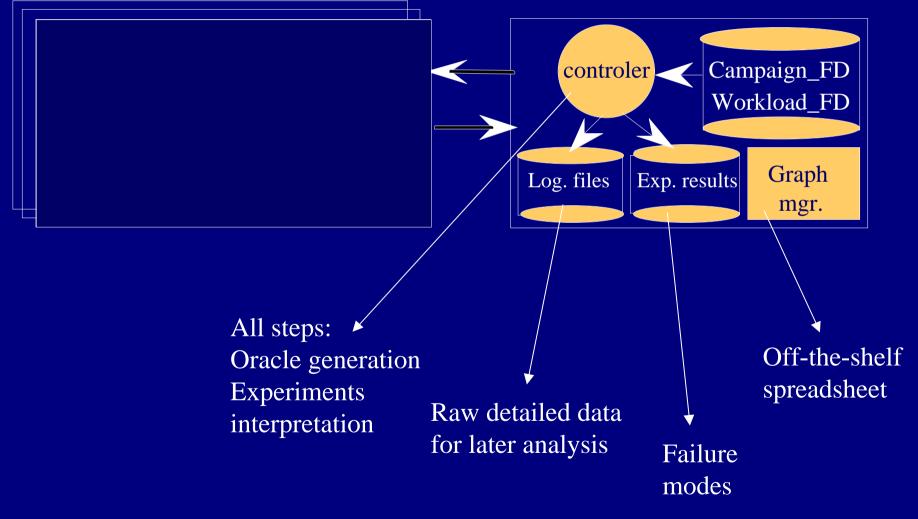
Results

- statistics
- raw data (*a posteriori* in-deep analysis)

Fault containment wrappers

• Principles and basic techniques

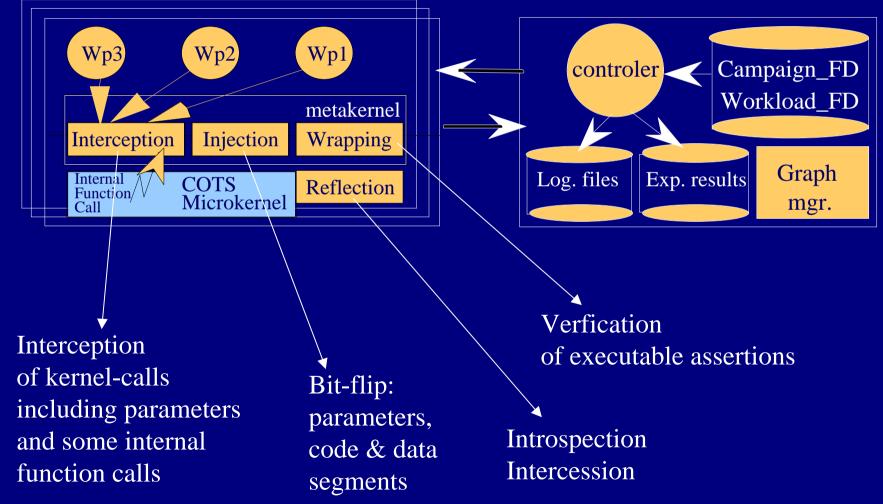
- Encapsulation of weak components
- Modeling microkernel functional classes
- On-line verification of expected properties

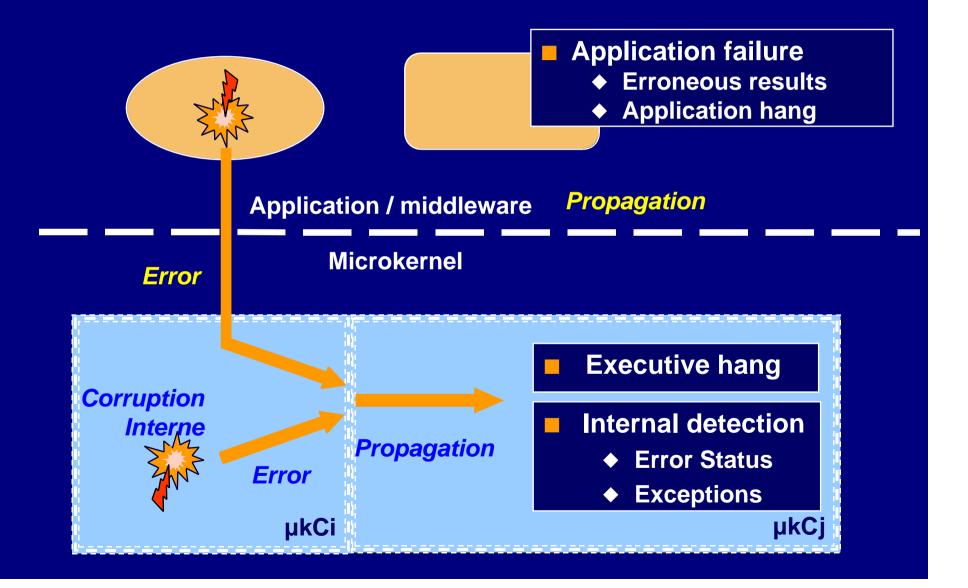

• Implementation of generic wrappers

- Principle
 - Verification of executable assertions
 - Verification of formal expressions (model-checking)
- Implementation based on the notion of reflective component
 - Interception of system calls and internal events
 - Some internal information is made observable from outside
 - Microkernel + observation/control = reflective microkernel

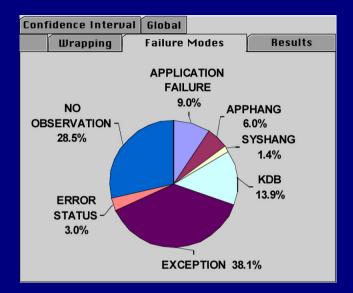
Description of the tool

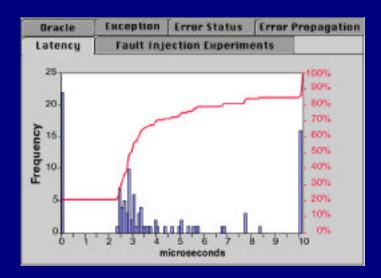
Target machines


Host machine

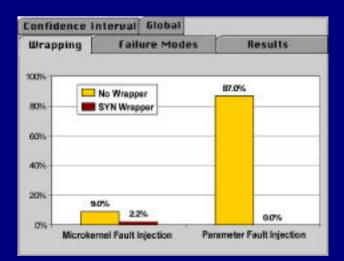

Description of the tool

Target machines

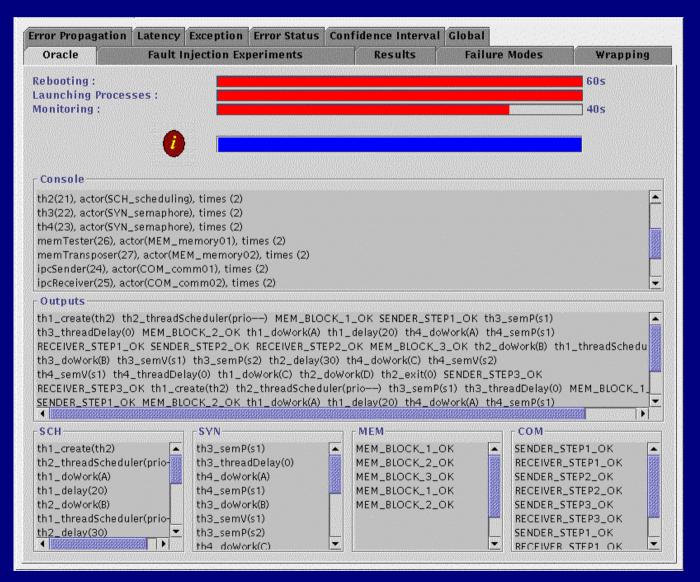

Host machine



Campaign outputs



Sample of measures



MAFALDA in action

General Wrapper Faul	lt Injection	Workload Processes	Auxiliary Processes	Destination Directories	
Target Component-	Model —	Duration	Trigger	Туре	
 Scheduling Synchronization 	Microkern Ode	nel 💿 Transi 🔾 Perma			
 Memory Communication 	O Data		🖲 Both		
) Paramet	er			

Running experiments: the oracle

Running experiments: fault injection

rror Propagati	on Latency	Exception Error Statu	is Confidence Interval	Global	
Oracle	Fault Ir	njection Experiments	Results	Failure Modes	Wrapping
Experiment # 750		Rebooting			#3000 60s
			Processes : [40s
		Fault impa	ct: APPLICATION FAILUR	E	
Console					
[c042d32e:c04	2d32e:506:19	78:_uSemUnblock:TEXT]	: 3e XOR 1 -> 3f		
Time trigger ha	as occurred				
		(1			
The fault has b	ieen activated	(breakpoint0)			
Fault removed	(Single Step C	alled)			
Outputs					
SENDER_STEP1 th3_semP(s2)	LOK MEM_BL th4_doWork(A P2_OK th1_th	OCK_2_OK th1_doWorl) th4_semP(s1) th2_do nreadScheduler(prio)	k(A) th1_delay(20) th3_ bWork(B) RECEIVER_STEP	threadScheduler(prio) doWork(B) th3_semV(s1) 1_OK SENDER_STEP2_O STEP3_OK RECEIVER_STE rk(D) th2_exit(0)	к
MEM_BLOCK_3	s_ok	-			
MEM_BLOCK_3	s_ok			- COM	
MEM_BLOCK_3	3_OK	SYN th4_doWork(A)	MEM MEM_BLOCK_2		STEP2_OK
MEM_BLOCK_3 • SCH th2_doWork(B)	3_OK		이렇게 잘 못 같아. 이렇게 잘 못 한 것 같아요. 이렇게 잘 못 했다. 것	_OK SENDER_	
MEM_BLOCK_3 • SCH th2_doWork(B) th1_threadSch th2_delay(30)	3_OK	th4_doWork(A) th4_semP(s1) th3_doWork(B)	MEM_BLOCK_2 MEM_BLOCK_3 MEM_BLOCK_1	_OK SENDER_1 _OK RECEIVER _OK SENDER_1	STEP2_OK _STEP2_OK STEP3_OK
MEM_BLOCK_3 CH th2_doWork(B) th1_threadSch th2_delay(30) th1_doWork(C)	3_OK	th4_doWork(A) th4_semP(s1) th3_doWork(B) th3_semV(s1)	MEM_BLOCK_2 MEM_BLOCK_3 MEM_BLOCK_1 MEM_BLOCK_2	_OK SENDER_1 _OK RECEIVER _OK SENDER_1 _OK RECEIVER	STEP2_OK _STEP2_OK STEP3_OK _STEP3_OK
MEM_BLOCK_3	3_OK	th4_doWork(A) th4_semP(s1) th3_doWork(B)	MEM_BLOCK_2 MEM_BLOCK_3 MEM_BLOCK_1	LOK SENDER_1 LOK RECEIVER LOK SENDER_1 LOK RECEIVER LOK SENDER_1	STEP2_OK _STEP2_OK STEP3_OK

Running experiments: results

Error Propagation	Latency Exception	Error Status Co	nfidence Interval	Global	
Oracle	Fault Injection Ex	periments	Results	Failure Modes	Wrapping
Results File					
Experiment number	1				
Fault Activated! (reco	overed)				100
Fault :					
[c042b32e:c042b32	2d:203:1978:_uSemBlo	ck:TEXT]: 3e XOR 1	-> 3f		
Failure :					
Undetected Failure	in SYN				
Experiment number	2				
Fault Activated! (reco	overed)				
Latency : 2431.4285	71				
Fault :					
[c042a54b:c042a54	4b:921:2077:_uSemUn	block:TEXT]: 89 XOR	1 -> 88		
Failure :					
	tation fault thread 23 I	PC c042a584 faultA	ddr 1 Actor 19 (SYN	I_semaphore) killed on exc	eption

Lessons learnt (1-3)

• Workload definition and oracle

- Generic workload / component Æ design, programming flaws
- Specific workload / application Æ failure modes (oracle)

• Fault injection

- Selection: random vs. predefined location of the bit-flip
- Kernel injector: debugging features of modern microprocessors
- Parameter injector: interception of kernel-calls (library-based vs. trap-based µkernel)

Assertions and wrappers

- Formalize the expected behavior from the integrator viewpoint
- Performance: tradeoff between modeling and runtime overhead
- Temporal logic expressions interpreted on-line by a model checker

Lessons learnt (4-6)

• Raw data analysis

- Analysis of logged data Æ identification of program flaw
- User-defined semantics of the failure modes

• Interpretation of results

- One campaign targets a microkernel instance & an activation profile
- Variability of the results:
 - Stand-alone version vs. Posix-based version
 - Reactive application *vs.* static application

• Target system evolution

- A slightly new instance Æ new campaign needed
- Is the new release/version acceptable?
- Is the new instance compatible with architectural solution?

Lessons learnt (7)

- Integrator's vs. supplier's viewpoint
 - Integrator
 - Weaknesses revealed
 - Decision: reject or encapsulate
 - » Appropriate wrappers
 - » Tradeoffs measurements
 - » Implementation: reflective framework
 - Supplier
 - identification of bugs not revealed by standard benchmarking activities Æ product improvement
 - Implementation of external error detection mechanisms:
 - » Development of the reflection module
 - » Mechanisms left open to the integrator

Conclusion

• Experiments

- Chorus ClassiX
 - Failure mode analysis and wrapping (SYN & SCHED)
 - Source code Æ implementation of the reflective framework
- LynxOS
 - Only failure mode analysis on a black-box instance
 - Metainterface delivered to the supplier

• Current work and perspective

- Characterization: extension of MAFALDA to real-time issues
- Wrapping: formal description in temporal logic + on-line model checking
- Implementation: reflective framework

Thank you!

Jean-Charles Fabre, Manuel Rodríguez, Jean Arlat, Frédéric Salles and Jean-Michel Sizun

LAAS-CNRS Toulouse, France

PRDC-2000, UCLA, Los Angeles, CA, USA — 18-20 December 2000