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M-FUNCTIONS AND PARALLEL ASYNCHRONOUS ALGORITHMS*

DIDIER EL BAZt

Abstract. The solution of nonlinear systems of equations Fx = z via parallel asynchronous algorithms
is considered. It is shown that when F is continuous, off-diagonally antitone, and strictly diagonally isotone,
then point asynchronous iterations converge monotonically to a solution of the problem from supersolutions
and subsolutions. A global convergence result for asynchronous iterations, when F is a continuous, surjective
M -function is also presented.
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1. Introduction. There is a variety of parallel iterative methods for nonlinear
problems (see Baudet [1], Schendel [12, App. 2], Sloboda [13]). In this paper we
consider asynchronous relaxation methods for nonlinear systems of equations. There
is now considerable understanding of the convergence properties of parallel asyn-
chronous iterations for a broad class of problems including some linear and nonlinear
systems of equations, network flow problems, and dynamic programming. First, Chazan
and Miranker [4] have formulated a model of parallel asynchronous algorithms. They
have shown that parallel asynchronous iterations converge to the solution of a linear
system of equations Ax = b if and only if A is an H-matrix. Donnelly [5] has given
convergence results for overrelaxed periodic schemes in the linear case. Miellou [6]
and Baudet [1] have extended the results of Chazan and Miranker to nonlinear
fixed-point problems by proving the convergence of parallel asynchronous algorithms
for P-contraction mappings. Concurrently, Miellou [7] has shown that asynchronous
iterations converge monotonically from supersolutions and subsolutions for con-
tinuous, isotone fixed-point mappings. Bertsekas [2] has also shown the monotone
convergence of a distributed asynchronous algorithm for a broad class of dynamic
programming problems. In a recent paper [3], Bertsekas and El Baz obtained the same
result for single commodity convex network flow problems. In these last two papers
the convergence is based on the property of isotonicity of the fixed-point mappings.
Finally, Miellou [8] has considered the nonlinear system of equations Fx = z and some
corresponding fixed-point mapping G for block asynchronous iterations, and has
shown that when F is a continuous, surjective M -function, then G is isotone. Moreover,
if G is continuous, then asynchronous iterations converge monotonically from super-
solutions and subsolutions.

In this paper we concentrate on point asynchronous iterations. We show that
when F is continuous, off-diagonally antitone, and strictly diagonally isotone, then
asynchronous iterations converge monotonically from supersolutions and subsolutions.
We show also that any asynchronous iteration converges to the unique solution of
Fx =z, whatever the value of z, and for any starting point when F is a continuous
surjective M-function. The results presented in this paper extend to asynchronous
iteration convergence results for underrelaxed Gauss-Seidel and Jacobi iterations
proved by Rheinboldt [10, § 3]. For other extensions of the convergence results in
[10], in particular to block processes, the reader is referred to Rheinboldt [11, § 6].
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The class of problems considered in this study is broad. Off-diagonally antitone
mappings and M-functions occur in the discretization of certain boundary value
problems and in the study of nonlinear network flows (see [10], [11]).

In § 2 we introduce a fixed-point problem associated with the nonlinear system
of equations Fx =z and study the properties of the fixed-point mapping when F is
continuous, off-diagonally antitone, and strictly diagonally isotone. In § 3 we present
convergence results for asynchronous iterations.

2. Preliminaries. We consider the solution of nonlinear systems of equations
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where x,, ' - -, x, denote the components of vector x element of the n-dimensional
real linear space R". The natural partial ordering on R” is defined by
For x,ye R", x=y ifandonlyif x;=y, i=1,:---, n

LemMA 2.1. Let F: Dc R" - R" be continuous, off-diagonally antitone, and strictly
diagonally isotone, and suppose that for some z € R" there exist points x°, y°€ D such that

x°=y°, D'={xeR"|x°=x=y"}e D, FxX’=z=F"
Then, for any x € D’ there exists a unique vector £ € D' with components X; for which
(2.1) filxy, o, K Xe) =2, i=1,-,n
Proof. Suppose that for xe D' and ie{l,---,n}, fi(x)<z. Since F is off-
diagonally antitone and x = y°, it follows that (see [10, Def. 2.7])
(2.2) [ <z =fLO)Sfilx0, o, pd e X).

By the continuity and strict diagonal isotonicity of F (see [10, Def. 2.7]), (2.2) implies
the existence of a unique %; for which
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For further details about off-diagonally antitone and strictly diagonally isotone map-
pings the reader is referred to Ortega and Rheinboldt [9, § 13.5] and Rheinboldt [10,
§2],[11, § 2].

Now suppose that f;(x) = z,. From the off-diagonal antitonicity of F it follows that

(2.3) fixi, o Xl ) SO =5 = /(000

By the continuity and strict diagonal isotonicity of F, (2.3) implies the existence of a
unique X; for which
0
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We introduce the fixed-point mapping G: D'< R" - D’ defined by
(2.4) Gx =X, where X is defined by (2.1).

Clearly, G is well defined; moreover, x* is a fixed point of G if and only if Fx*=z.
LemMa 2.2. Under the hypothesis of Lemma 2.1, the fixed-point mapping G, which
is defined by (2.4), is continuous and isotone on D'. Moreover, x° = Gx°, Gy°=y° for
starting points x° and y° for which Fx°= z= Fy°.
This result is derived from the proof of Theorem 6.3 of [11]. x* and y° are a
so-called subsolution and supersolution, respectively.
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In the notational conventions of this paper a subscript denotes a component index
and a superscript denotes an iteration index.

3. Convergence of asynchronous iterations. We consider asynchronous iterations
for the solution of systems of n equations Fx =z

In brief, an asynchronous iteration relative to the solution of Fx =z, the starting
point x°, the sequence of delays {k” =(k{,-- -, k7)}, and the sequence of nonempty
subsets of {1, - - -, n} denoted by {h”} is a sequence of points {x”} defined recursively
by

xP*l=x? ifigh?,
p—k? .. p+l . p—kiy _ op - P
S X7, ,xPy=12z ifieh?,
where for each i=1,---,n:

i occurs infinitely often in the sequence {h”}, k[ is a nonnegative integer,
p=0,1,- -, the function d;(p) = p— k[ is isotone, and lim , .« d;(p)=+c0.

For an analysis and examples of asynchronous iterations, reference is made to Baudet
[1]. The following theorem states a sufficient condition for the monotone convergence
of certain asynchronous iterations.

THEOREM 3.1. Suppose that the conditions of Lemma 2.1 hold. Then the asyn-
chronous iterations {x"} and {y*} corresponding to the same sequences {h"}, {k"} and
starting from x° and y°, respectively, are uniquely defined and satisfy

(1] P p+1 p+1 P 0 _ ..
x =xP=x""=y" =yT=y, p=0,1,---,
lim x?=x*=y*=1lim y?, Fx*=Fy*=z
p—>© po>oo

Proof. We recall that by Lemma 2.2 the fixed-point mapping G, which is defined
by (2.4), is continuous and isotone on D’. Theorem 3.1 then follows from a convergence
result of Miellou mentioned in the Introduction (see [7, Prop. 1]).

LEMMA 3.2. Suppose that the conditions of Lemma 2.1 hold. Then, Fx"=z=Fy”,
p=0,1,--.

Proof. Since F is off-diagonally antitone and strictly diagonally isotone, it follows
from Theorem 3.1 that for p=0,1,---, and i€ h(p)

= fi( T R T S A O,  pET YR EAO0).
For p=0,1,---,and ig h(p), it follows also that
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n=fiyl, -,y v =£007),

s q+ 1 ép, Z; =f;(y'147k‘ll, cee, y?+1, cee, yz_k‘,{)

lf y'p+1 — y?+l
Analogously, we can show that Fx”’ =z, p=0,1, - -.

We now consider a particular class of off-diagonally antitone and strictly diagonally
isotone mappings: M-functions. The reader is referred to Rheinboldt [10, § 2], [11,
§ 2] for a complete study of M-functions. Theorem 3.1 and Lemma 3.2 apply in
particular to continuous M-functions. We now state a global convergence result for
continuous surjective M -functions.
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THEOREM 3.3. Let F:R" > R" be a continuous, surjective M-function. Then, for
any z€ R", any asynchronous iteration {x?} converges to the unigue solution x* of Fx = z
for any starting point x°¢ R".

Proof. For given x°, ze R" define the vectors z, z, x°, ¢ R" by

_Zi:min (.ﬁ(xo)s Zi)a Z'Zmax (ﬁ(xo)’ Zi)a 1215 T ans
(3.1)
x°=F'z X°=F"'z
Let {x"}, {x"}, and {x"} denote the asynchronous iterations relative to the same
problem and to the same sequences {h"}, {k”}, and that start from x°, x°, and x°,
respectively. Since a continuous surjective M -function is surjectively diagonally isotone
(see [10, Def. 2.7, Thm. 2.10]), it follows that for p=0,1, -, and i€ h” the solutions

xP*' %P and x?*' of the equations
ﬁ(gc,”*k'l', c. ’E,_PH, e xf-kﬁ) =z,
fi(g{’*"”f, IR JARNRI ’ggfk’,:) =z,
f,-(x{”k'f, cee x,_PH’ cee x,r;—kfi) =z,

exist and are unique. It follows also that the asynchronous iterations {x "}, {x"}, and
{x?} are well defined.
First, we show by induction that

(3.2) x"=x"=x", p=0,1--.

From (3.1), Fx"= Fx°= Fx°. Since F is inverse isotone, we have (see [10, Def. 2.2])
x°=x°=x° From (3.1) and the inverse isotonicity of F it follows also that Fx"=z=
Fx° x’=x*=x°

Suppose that for some p=0

(3.3) x*=sxt=x* forO0=sk=p.

Then, if i & h?, it is straightforward that

—p+l1 +1 +1 +1 e =p+1
P PPl=xl, xPM=x""=xr.

=x/, x

1

If ie h? from (3.3) and the off-diagonal antitonicity of F it follows that
AT s B = = SO T XD
= f X ),

Then, by the strict diagonal isotonicity of F, x/*'=x?"'. Analogously, we can show
that x”"'= %”*', This completes the induction. By Theorem 3.1 we have

(3.4) lim x”=lim x"=x*=F 'z
p——»OO p»oo
Then, from (3.2) and (3.4), it follows that lim,_ . x7 = x*.
The results of Theorems 3.1 and 3.3 can be extended without difficulties to
underrelaxed asynchronous iterations.
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