
A Survey on Parallel Genetic Algorithms for Shop Scheduling Problems

Jia LUO
LAAS-CNRS, Universite de Toulouse, CNRS

Toulouse, France
jluo@laas.fr

Didier EL BAZ
LAAS-CNRS, Universite de Toulouse, CNRS

Toulouse, France
elbaz@laas.fr

Abstract—There have been extensive works dealing with
genetic algorithms (GAs) for seeking optimal solutions of shop
scheduling problems. Due to the NP hardness, the time cost is
always heavy. With the development of high performance
computing (HPC) in last decades, the interest has been focused
on parallel GAs for shop scheduling problems. In this paper,
we present the state of the art with respect to the recent works
on solving shop scheduling problems using parallel GAs. It
showcases the most representative publications in this field by
the categorization of parallel GAs and analyzes their designs
based on the frameworks.

Keywords-shop scheduling; genetic algorithms; parallel
computing; HPC

I. INTRODUCTION
The genetic algorithm (GA) is a stochastic search

algorithm based on the principle of natural selection and
recombination [1]. It is a kind of evolutionary algorithm and
has been successfully applied to solve many optimization
problems, e.g., knapsack problems, shop scheduling
problems or travelling salesman problems [2][3][4].
Nevertheless, when GAs are applied to more complex and
larger problems, the required time to find adequate solutions
is increased. Particularly, repeated fitness function evaluation
is often the most prohibitive and limiting segment when GAs
are choosen to find an optimal solution for high-dimensional
or multimodal implementations. Meanwhile, GAs also suffer
from the problem of a tendency to converge towards local
optima rather than the global optimum. Previous works in
this area suggest to enlarge population size, increase
mutation rate or hire niche penalty in selection to keep the
diversity of GAs. However, any of them may raise the
complexity of the algorithm and lead to more time
consumption.

No doubt, parallel implementation is considered as one of
the most promising choices to make GAs work faster. There
are different ways of exploiting parallelism in GAs [5]:
master-slave models, fine-grained models, island models and
hybrid models. The master-slave model is the only one that
does not affect the behavior of the algorithm by distributing
the evaluation of fitness function to slaves. The fine-grained
model works with a large spatially population. The evolution
operations are restricted to a small neighborhood with some
interactions by overlap structure. The island model divides a
population into subpopulations. Subpopulations on the
islands are free to converge towards different sub-optima and

a migration operator can help mix good features that emerge
from the local island. The hybrid model combines any two of
the above methods.

The shop scheduling problem is one of the best known
combinatorial optimization problems where jobs are
assigned to machines at particular times. The use of
evolutionary algorithms for shop scheduling problems
started around 1980 [6]. There have been a huge number of
publications dealing with GAs for shop scheduling problems.
Due to the NP hardness, the time cost to obtain an adequate
solution by the serial GA is always heavy. With the
development of high performance computing (HPC) in last
decades, the implementation of parallel GAs to shop
scheduling problems has been extensively studied. The
purpose of this paper is to give a tutorial survey of recent
works on solving scheduling problems in manufacturing
systems using parallel GAs.

The rest of this paper is organized as follows. In section
2, a brief introduction about shop scheduling problems and
their new integrated factors are given. Section 3 discusses the
typical parallel GAs, namely, master-slave models, fine-
grained models and islands models, developed for the
scheduling problems in manufacturing systems. Section 4
analyzes the frequently used HPC frameworks and their
associated parallel GAs design in this domain. Finally,
conclusions are stated in section 5.

II. SHOP SCHEDULING PROBLEMS
The shop scheduling problem is a classic optimization

problem. One instance of the problem consists of a set of n
jobs J1, J2, …, Ji , ..., Jn and a set of o machines M1, M2, …,
Mm, …, Mo. Each job Ji comprises a number of g stages S1,
S2, …, Ss, …, Sg. The processing time of one step of Ji on a
particular machine is denoted as an operation and is
abbreviated by (j, s, m). Usually, it is given in advance as
Pjsm with the release time Rj and the due time Dj.
Additionally, other required conditions are shown in Table 1.

TABLE I. OTHER REQUIRED CONDITIONS FOR SHOP SCHEDULING PROBLEMS

NO. Description

1 Each operation of a job must be processed by one and only one
machine.

2 Each machine can process no more than one operation at a time.
3 Each job is available for processing after the release time.

4 Setup times for job processing and machine assignment times
between stages are not taken into consideration.

5 There is infinite intermediate storage between machines.

629

2018 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-5555-9/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPSW.2018.00103

There are three ways to classify the scheduling problem
in manufacturing systems by the machine environment, the
job characteristics and the optimization criterion [7]. Most of
works concern on the three basic types: a flow-shop, a job-
shop and an open-shop. In a flow-shop, each job passes
through the machines with the same order whereas a job-
shop enables specified jobs have possibly different machine
orderings. In an open-shop, there is no particular route
imposed on jobs. In addition to these three types, flexible
shops also catch a lot of attentions. It is a combination of a
shop scheduling problem and a parallel machine scheduling
problem, in which at least one stage consists of several
parallel machines [6]. Most of works considered are the
flexible flow shop or the flexible job shop.

When a feasible schedule is given, we can compute for
each Ji: the completion time Cj, the tardiness Tj = max{0, Cj -
Dj}, and the unit penalty Uj = 1 if Cj > Dj, otherwise 0. The
most common optimality criteria are the minimization of the
makespan Cmax, the minimization of the sum of the weighted
completion time , the minimization of the sum of the
weighted tardiness , and the minimization of the sum of
the weighted unit penalty , or any combination among
them.

With the development of modern manufacturing, some
new factors are integrated into the basic shop scheduling
problems, such as energy controlling, dynamic environment
and so on. Xu et al. built a discrete-time mixed-integer
programming model and a slot-based mixed-integer
programming model in [8] to achieve a global optimal
solution between the peak power and the traditional
production efficiency without any compromise on computing
efficiency. Tang et al. [9] adopted a predictive reactive
approach based on an improved particle swarm optimization
to search for the Pareto optimal solution in dynamic flexible
flow shop scheduling problems reducing the energy
consumption and the makespan.

Most shop scheduling problems are known as strong NP-
hard problems [10]. Many works to solve it by exact
methods and meta-heuristic methods have been done.
However, this class of problems requires complex and time-
consuming solution algorithms. Although the speed of the
best supercomputer increases 10 times each 3 or 4 years
recently, this increase has only a little influence on the size
of solvable problems [11]. Therefore, efforts to coordinate
these algorithms with HPC accelerators to solve shop
scheduling problems efficiently and effectively are deeply
desirable.

III. GENETIC ALGORITHMS WITH SCHEDULING PROBLEMS
IN MANUFACTURING SYSTEMS

A. Simple Genetic Algorithms
A simple GA [1] starts with a randomly generated initial

population consisting of a set of individuals. An individual is
representative by a chromosome. For flow shop problems, a
standard chromosome is made of a string of length n, and the
i-th gene contains the index of the job at position i [6]. An
individual describes a feasible schedule of jobs’ sequence on
target machines. For job shop problems, there are two ways

of chromosome representation: direct way and indirect way.
The direct way is similar with the way for flow shop
problems: a feasible schedule is directly encoded into the
chromosome, whereas the chromosome in the indirect way
shows a sequence of dispatching rules for job assignment
[12]. As no imposed technological routes of jobs for open
shop problems, both of the encoding approaches for the flow
shop and the job shop can be applied in this case. The fitness
value of each individual is used to evaluate the current
population. It is related to the objective function value of
shop scheduling problems at the point represented by a
chromosome. Since most common optimality criteria of shop
scheduling problems are about minimization, The fitness
function FIT(i) of an individual i usually can be transferred
as [6]:

where denotes the objective function value of a feasible
schedule from individual i and states the objective function
value of some heuristic solution.
As the value of object function for shop scheduling problems
are generally positive, some papers measure the fitness
function FIT(i) as:

Three GA operations: selection, crossover and mutation,
work on these chromosomes to get new search points in a
state of space. Usually, individuals are first selected through
a fitness-based process. For shop scheduling problems,
solutions with larger fitness values are more likely to be
selected. Some well-known methods are implemented in this
step: the roulette wheel selection, the stochastic universal
sampling, the tournament selection and so on [13]. Next, the
crossover takes two random individuals kept after the
selection and exchanges random sub-chromosomes. The
classic methods are the n-point crossover and the uniform
crossover. Due to particular requirements of different shop
scheduling problems, additional steps may be required to
repair the illegal offspring caused by the crossover. The
mutation then alters some random value within a
chromosome. Different from the binary encoding, the
mutation for shop scheduling problems works often based on
the neighborhoods e.g. shift mutation (insertion
neighborhood) or pairwise interchange mutation (swap
neighborhood) to respect feasible solutions.

TABLE II. PSEUDO-CODE OF THE SIMPLE GA

1: initialize();
2: while (termination criteria are not satisfied) do
3: Generation++
4: Selection();
5: Crossover();
6: Mutation();
7: FitnessValueEvaluation();
8: end while

630

The population evaluation is executed after these three
steps. Sometimes, an elitist strategy is hired afterwards to
keep limited number of individuals with the best fitness
values to the next generation. This process repeats until the
termination criteria have been satisfied. The full procedure is
stated in Table 2.

B. Master-Slave Genetic Algorithms
The master-slave GA is known as global parallel GA as

well. It keeps a single population as a simple GA that is
stored at the master side. In this case, each individual is free
to compete and mate with any other. Since the fitness value
calculations of individuals are independent and there is no
communication with others, slaves take care of the fitness
evaluation in parallel. Data exchange occurs only when
sending and receiving tasks between the master and slaves.
Obviously, frequent communication overhead offsets some
performance gains from slaves’ computing. However, as
master-slave GA is the easiest parallel model to be
implemented and does not assume underlying architecture, it
is still very efficient when the fitness evaluation is complex
and requires considerable computation. The steps of this
parallel model are presented in Table 3.

TABLE III PSEUDO-CODE OF THE MASTER-SLAVE GA

1: Initialize();
2: while (termination criteria are not satisfied) do
3: Generation++
4: Selection();
5: Crossover();
6: Mutation();
7: Parallel_FitnessValueEvaluation_Individuals();
9: end while

1) Job Shop Scheduling Problems
AitZai et al. modeled the job shop scheduling problem

with blocking using the alternative graph with conjunctive
arcs and alternative arcs in [14]. In addition to a parallel
branch and bound method, two master-slave GA
parallelization methods were also presented. The first one
was based on CPU networking with a star network of inter-
connected computers. On the opposite, the second one
worked on GPU with some memory management respecting
to CUDA (Compute Unified Device Architecture)
framework, which was a NVIDIA’s parallel computing
architecture that increased computing performance by
harnessing the power of GPU. Numerical tests were carried
on a station equipped with CPU 2: Intel Xeon E5620 and
GPU: NVIDIA Quadro 2000 01 Go GPU. With a population
size 1056 and a limited total execution time 300s, the master-
slave GA using GPU could get maximum 15 times more
explored solutions than the GA using CPU. Moreover, a
related earlier work was introduced by AitZai in [15]. In
order to improve the solution of job shop scheduling
problems, Somani et al. [16] imposed a topological sorting
step to the GA before the fitness value calculation, which
was used to generate the topological sequences of directed
acyclic graph. The parallel implementation of the proposed
GA in CUDA environment consisted of two kernels. The
former one was used for making the topological sequences

by the help of topological sorting, while the later one was
hired to calculate the makespan from the longest path
algorithm. The crossover and the mutation were performed
between two randomly selected schedules on CPU.
Experiments was setup with Intel(R) Xeon(R) E5-2650 @
2.00 GHz and NVIDA Tesla C2075 (448 cores) and results
have shown the proposed GA performed around 9 times
faster for large-scale problems than the sequential GA.

Another job shop scheduling problem was studied by
Mui et al. [17] where a prior-rule was used to create active
schedules. The selection combined the idea of an elitist
strategy and a roulette wheel selection, whereas the
crossover took a GT algorithm implemented on three parents
and the mutation used neighborhood searching technique.
With this design, the main part of the GA could be computed
independently. In the parallel environment, a master-slave
model was employed where the slaves performed the GA
evolutionary operators concurrently and the master searched
the global optimum among optimal results received from
slaves. The proposed method was run on the CSS computer
server system with 6 computers, in which each computer had
a Pentium-4 CPU with 4GB free of ram. Empirical results
have shown the master-slave GA with 6 processors could
save 3 to 4 times the execution time compared to the
sequential version.

2) Flow Shop Scheduling Problems
A master-slave GA dealing with a single population and

a group of local subpopulations was presented in [18] for a
flow shop problem. This method involved a master scheduler
and a set of slave processors. The master scheduler ran the
GA operators (partial replacement selection, cycle crossover
and swapping mutation) of all individuals sequentially.
When the evolution of one individual was finished, it was
placed in the unassigned queue from which the master
scheduler partitioned the fitness value calculation to slave
processors in batches. The choice of candidate slave
processors was made upon the involved communication
overhead and their computational potential. The available
resources among slave processors in the distributed system
could vary over time. Moreover, all individuals were
maintained in the master scheduler synchronously. The
proposed GA was implemented on a laptop with Prentium IV
core 2 Duo 2.53 GHz CPU. The outputs showed the new
algorithm could be 9 times faster maximally than the results
of serial GA achieved by the Lingo 8 software.

Attentions to use master-slave GA to shop scheduling
problems are increased in the last decade and the work is
carried with various underlying architectures. Since only
independent tasks are executed on slaves without
communication cost among them, both the conventional GA
and any improved GAs can be implemented with it easily.
Although the communication between the master and the
slaves is an impediment in speed, it still performs well to
solve shop scheduling problems whose fitness value
calculation is complex and requires considerable
computation.

631

C. Fine-grained Genetic Algorithms
The fine-grained GA can also be called as neighborhood

GA, diffusion GA or massively parallel GA. The main idea
is to map individuals of a single GA population on a spatial
structure. An individual is limited to compete and mate with
its neighbors, while the neighborhoods overlapping makes
good solutions disseminate through the entire population.
This model obtains good population diversity when dealing
with high-dimensional variable spaces [19]. Meanwhile, it is
easy to be placed in any two dimensional grid, as many
massively parallel machines are designed with this topology.
However, we cannot neglect the great influence from the
spatial structure, which generally has little chance to be
modified. The implemented process of the fine-grained GA
is shown in Table 4.

TABLE IV PSEUDO-CODE OF THE FINE-GRAINED GA

1: Initialize();
2: while (termination criteria are not satisfied) do
3: Generation++
4: Parallel_NeighborhoodSelection_Individuals();
5: Parallel_NeighborhoodCrossover_Individuals();
6: Parallel_Mutation_Individuals();
7: Parallel_FitnessValueEvaluation_Individuals();
8: end while

1) Job Shop Scheduling Problems
A fine-grained GA solving job shop scheduling problems

was considered by Tamaki et al. [20]. In this paper, the
selection was executed locally in a neighborhood of each
population. The objectives of this neighborhood model were
to improve search in the GA by suppressing favorably the
premature convergence phenomena, and to reduce
computational time by implementing it on a parallel
computer at the same time. The method was then modified as
an absolute neighborhood model and implemented on
Transputer. Transputer was a MIMD (Multi-Instruction
Multi-Data) machine with microprocessors, featuring
integrated memory and serial communication links. Through
several computational experiments for job shop scheduling
problems, the parallel GA with 16 processors could shorten
the calculation time dramatically. However, as Transputer
did not equip with shared memory, the information exchange
was handled through communication operations. Therefore,
the calculation time reduction was not able to reach an ideal
level. Lin et al. [21] investigated parallel GAs on job shop
scheduling problems with a direct solution representation,
which encoded the operation starting times. The GA
operators were inspired by the G&T algorithm with the
random selection, the THX (time horizon exchange)
crossover and the THX mutation. Two hybrid models built
up by the fine-grained GA with a two-dimensional torus
topology and the island GA connected in a ring were
discussed in this paper. The first one was an embedding of
the fine-grained GA into the island GA, in which each
subpopulation on the ring was a torus. The migration on the
ring was much less frequent than within the torus. In the
second model, the connection topology used in the island
GA was one which is typically found in the fine-grained GA,

and a relatively large number of nodes were used. The
migration frequency kept the same in the island GA. Those
two methods were carried on a Sun Ultra 1 which was a
family of Sun Microsystems workstations based on the 64-
bit Ultra SPARC microprocessor with a single population
GA, two island GAs of different subpopulation sizes and one
torus fine-grained GA. The execution time comparison was
only made between the single population GA and two island
GAs with the speedup of 4.7 and 18.5 respectively.
Regarding to solutions quality, best results were obtained by
the hybrid model consisting of island GAs connected in a
fine-grained GA style topology by combing the merits from
them.

Compared with other two kinds of parallel GA, it seems
the implementation of fine-grained GA for shop scheduling
problems is rare and outdated, no matter the amount of
related papers or the various types of treated problems.
Along the development of modern computing accelerators
with two-dimensional grid environment, like GPU, this
implementation has a lot of potential in the near future. Apart
form manufacturing systems, the fine-grained GA is also
used for task scheduling problems [22]. It is another type of
scheduling problems that focuses on minimizing the
makespan as well but for a set of tasks to be executed in
multiprocessor systems. In this domain, the fine-grained
model is treated sometimes as parallel cellular GA [23].

D. Island Genetic Algorithms
The island model is the most famous for the research on

parallel GAs. In some papers, it may be called as coarse-
grained models, multi-deme models, multi-population
models, migration models or distributed models. Unlike
previous parallel GAs, this model divides the population into
a few relatively large subpopulations. Each of them works as
an island and is free to converge towards its own sub-optima.
At some points, a migration operator is utilized to exchange
individuals among islands. These configurations make the
average population fitness improve faster and mix good local
feature efficiently [5]. The main idea of this parallelization is
a simple extension of the serial GA while the island model
based underlying architecture is easily available. Therefore,
the island GA dominates the work on parallel GAs for shop
scheduling problems. A brief outline about this algorithm is
illustrated in Table 5.

TABLE V PSEUDO-CODE OF THE ISLAND GA

1: Initialize();
2: while (termination criteria are not satisfied) do
3: Generation++
4: Parallel_SubSelection_Islands();
5: Parallel_SubCrossover_Islands();
6: Parallel_SubMutation_Individuals ();
7: Parallel_FitnessValueEvaluation_Individuals();
8: if (generation % migration interval==0)
9: Parallel_Migration_Islands();
10: end if
11: end while

1) Job Shop Scheduling Problems

632

Park et al. [24] studied a hybrid GA and its parallel
version for job shop scheduling problems with an operation-
based representation. Concerning the parallel GA, the
population was divided into two or four subpopulations.
Each subpopulation acted as a single-population GA, where
some individuals could migrate from one subpopulation to
another at certain intervals. As four population initialization
methods, four crossover operators and two selection
operators were proposed in this paper, different
subpopulations were equipped with different settings to help
them evolve independently. Beside, the migration was
implemented synchronously with a static ring type
connection scheme. Experiments were carried out on a PC
with Pentium II 350 and 64MB main memory with MT,
ORB and ABZ benchmark problems. The outputs confirmed
the island GA improved not only the best solution but also
the average solution from results of single GA. Asadzadeh et
al. addressed a parallel agent-based GA for a job shop
scheduling problem in [25]. Chromosomes of the population,
indicating feasible schedules for problem instances were
created by the management agent and the execute agent.
Afterwards, the management agent divided it into
subpopulations with the same size and sent each of them to
processor agents. Each processor agent located on a distinct
host and executed GA with a roulette wheel selection, a
partially matched crossover and a subsequent gene mutation
on its subpopulation independently. Different subpopulations
communicated by exchanging migrants through the
synchronization agent. The number of processor agents was
fixed at eight in the experiments. Furthermore, those agents
formed a virtual cube amongst themselves and each of them
had three neighbors. JADE middleware was used to
implement this method, which was a software development
framework aiming at developing multi-agent systems.
Compared with the serial agent-based GA, the suggested
algorithm obtained much short schedule lengths and had
higher convergence speed with large size problems. In [26].
Gu et al. constructed a stochastic job shop scheduling
problem by a stochastic expected value model. It was solved
by a parallel quantum GA organized by the island model
with a hybrid star-shaped topology. The information
communication was performed through a penetration
migration at the upper level and through a quantum
crossover at the lower lever. Besides, the roulette wheel
selection, the cycle crossover and the Not Gate mutation
were designed as GA operators. Computational tests were
run on a PC with a Pentium Processor with clock speed of
1.66 GHZ. On the average, the advised method had a better
performance of generating optimal or near-optimal solutions
with fast convergence speed than a GA or a quantum GA for
large instance problems. Spanous et al. [27] designed a
parallel GA for solving job shop scheduling problems with
an elitist strategy based selection, a path relinking crossover
and a swap mutation. The parallelization was set following
the islands paradigm. However, one subpopulation merged
with another one once the individuals inside stagnated,
where the Hamming distance of more than half individuals
were less than a predefined value. The process continued
until there was only one subpopulation. Experiments were

performed on a commodity workstation with a Pentium IV
CPU running at 2 GHz with 1 GB RAM, The results
indicated the addressed algorithm managed to attain a
comparable performance with five recent approaches.

2) Flow Shop Scheduling Problems
Huang et al. [28] discussed flow shop scheduling

problems with fuzzy processing times and fuzzy due dates,
where the possibility and necessity measures with exact
formulas were adopted to maximize the earliness and
tardiness simultaneously. A modified GA was designed to
solve the problems with the random keys, the parameterized
uniform crossover and the immigration. If Pt was the family
of chromosomes in the t-th generation, then |Pt| denoted the
population size of Pt. The next generation was made of a%
best chromosomes from Pt, b% chromosomes for taking
crossovers, and c% chromosomes generated randomly as
immigrations, where a+b+c=100. In order to get more
efficient convergence, an idea of the longest common
substring and rearranging of the chromosomes chosen in the
mating pool were also imposed in the algorithm. The full
procedure was coded on CUDA by separating the whole
population into blocks using the block size of 256 or 128.
Circumventing to load the random keys of all chromosomes
to global memory, one chromosome was distributed to a
block so that all random keys could fit in the shared memory.
Although there was no migration among blocks, the idea was
organized based on the island GA. In the case of 200 jobs,
the numerical simulations on a 2.33 GHz Intel Core2 Quad
desktop computer with 2 GB of RAM, and an NVIDIA
GeForce GTX285 graphics card showed that the proposed
GA combining with CUDA parallel computation got 19
times speedup. Similarly, Zajicek et al. [29] proposed a
homogeneous parallel GA model on the CUDA architecture,
where all computations were carried out on the GPU in order
to reduce communication between CPU and GPU. The main
idea was based on an island GA with a tournament selection,
an arithmetic crossover and a Gaussian mutation.
Experiments were carried on a system with AMD Phenom II
X4 945 3.0 GHz processor and NVIDIA Tesla C1060 GPU.
Some instances of the flow shop scheduling problem were
solved with speedup from 60 to 120 comparing to the
equivalent sequential CPU version.

Bo�ejko et al. proposed a parallel GA for flow shop
scheduling problems in [30]. The algorithm was based on an
island model. To implementations, a Multi-Step Crossover
Fusion was used to construct a new individual using the best
individuals of different subpopulations and worked with the
migration operator to complete the communication between
different islands. Tests were performed on 4-processors Sun
Enterprise 4x400 MHz under the Solaris 7 operating system,
which is a MIMD machine of processors without shared
memory. Four crossover operators and four mutation
operators were considered as GA operators. The efficiency
of the island GA was activated with the combination of three
strategies: with the same or different start subpopulations, as
independent or cooperative search islands and with the same
or different genetic operators. Results turned out the strategy
of starting the computation from different subpopulations on

633

every processor with different crossover operators and
cooperation was significantly better than others. The
improvement of the distance to reference solutions and the
improvement of the standard deviation were at the level of
7% and 40% respectively, comparing to the sequential GA.
A related work by the same team to minimize the total
weighted completion time for the flow shop problem with a
special case of a single machine was solved by a similar
island GA in [31]. The results noted the 8-processors
implementation performed the best.

3) Open Shop Scheduling Problems
Kokosi�ski et al. [32] studied an open shop scheduling

problem and two greedy heuristics, LPT-Task and LPT-
Machine, were proposed for decoding chromosomes
represented by permutations with repetitions. The GA
operators constituted a 2-elements tournament selection, a
linear order crossover and a swap mutation or an invert
mutation with constant or variable mutation probabilities. An
island GA with a migration strategy was applied to the
parallel version in which every island sent its best emigrants
to all other islands and received immigrants from them.
Incoming individuals replaced the chromosomes of host
subpopulation randomly. The experimental platform was a
PC with Pentium 4 processor (3.06 GHz) and 1 GB RAM.
Unfortunately, this parallelization did not reveal obvious
advantages in the results. A non-preemptive open shop
scheduling problem was discussed by Harmanani et al [33].
Except a feasible solution, a chromosome in this paper
included a scratch area through which a ReduceGap
operation communicated to GA operators: the crossover and
the mutation. A hybrid island GA was hired to organize the
parallelization where neighboring islands shared their best
chromosomes every GN generation and all islands
broadcasted their best chromosome to all other islands every
LN generations, where GN � LN. Islands were connected
through an Ethernet network and used the Message Passing
Interface (MPI) on a Beowulf cluster. The experiments were
executed on a cluster of five machines that were running
Linux and MPI. The outputs presented that the proposed
method converged to a good solution quickly before it
saturated with a speedup between 2.28 and 2.89 for large
instances. A similar work was carried by Ghosn et al. in [34]
later.

Regarding to solve shop scheduling problems by the
island GA, various researches have been done with different
architectures. We can discover that the works with GPU pay
heavier attention on speedup gained from the island GA. On
the opposite, the others consider more the improvement for
solutions quality and convergence speed. Few
implementations have discussed them simultaneously with a
fair comparison. Besides, the island connection topology is
varied from different papers with different migration
strategies. Some of the designs are carried with respect to the
underlying architectures, whereas the others are proposed
from supporting theories. However, a completely
understanding for the effects of migration is still missing.

4) Flexible Shop Scheduling Problems
Defersha et al. [35] considered an island GA for a

flexible job shop scheduling problem with lot streaming. In
this case, the batch of each job was split into certain number
of unequal consistent sublots. Each sublot of a job underwent
a number of operations in a fixed sequence where each
operation could be processed by one of several eligible
machines. Three commonly used migration topologies: ring,
mesh and fully connected were discussed in this paper with a
k-way tournament selection, five kinds of crossover and six
kinds of mutation applied by different probabilities. A
parallel computation environment composed more than 250
interconnected workstations each having an 8-core Intel
Xeon 2.8GHz processor was used for experiments. Test
problems were run using up to 48 cores and taking MPI for
communication. With all problems considered, there were
makespan reductions through the island GA. Meanwhile,
empirical studies presented the impact from its different
parameters. Regarding to topologies, the fully connected one
outperformed other two. Three migration policies: random-
replace-random, best-replace-random and best-replace-worst
were tested. Results showed the island GA was not much
sensitive to the change of migration policy while the best-
replace-random migration policy performed better slightly.
The same authors built a mathematical model for a flexible
job shop scheduling problem incorporating sequence-
dependent setup time, attached or detached setup time,
machine release dates, and time lag requirements in [36].
Like the previous work, the GA operators constituted a k-
way tournament selection, three assignment operators and
two sequencing operators applied by different probabilities.
However, islands were connected with a randomly topology
which employed randomly generated migration routes for
each communication epoch. The method was tested on a
similar experimental platform. Results of medium size
problems showed the island GA helped improve the
solutions quality and it converged to a better solution within
the allowable computational time for large size problems
where the single GA failed.

An island GA for flexible flow shop scheduling problems
was addressed by Belkadi et al. [37] where genome
constituted one assignment chromosome and a sequencing
chromosome. The GA was implemented on a biprocessor
architecture with a roulette wheel selection, a uniform
crossover and a mutation similar to the crossover but
operated only on the sequencing scheduling chromosomes.
Four combinations from two island connected typologies
(ring and grid with two dimensions) and two replacement
strategies (best and random) were tested. The results noted
those two parameters did not have significant influence in
the variation of makespan. Regarding to the subpopulation
size and its related subpopulation amount, the quality of the
solution decreased progressively at the same time as the
number of subpopulations increased based on the
experiments. However, when the complexity of the problem
rose up, this influence reduced. Finally, outputs stated the
migration interval was the parameter that had the decision
influence to the island GA where the quality of the solution
improved gradually with increasing migration frequency. A

634

comparison between the island GA and the sequential GA
was also carried in this paper. According to empirical results,
the island GA always obtained a smaller makespan while its
performance of execution time was only discussed with
theoretical values based on two processors. Rashidi et al.
[38] studied flexible flow shop scheduling problems with
unrelated parallel machines, sequence-dependent setup times
and processor blocking to minimize the makespan and the
maximum tardiness. Different weights were assigned to two
criteria to transform the problem into a single-objective
function. The individuals inside one island sought for their
own single-objective function, and all islands worked in
parallel for Pareto optimal solutions. The paired weights in
different islands are different with a small deviation between
each successive pairs. After executing the conventional GA
operators, a local search step or a Redirect procedure were
implemented to further cover the Pareto solutions. A
comparison was carried between the island GA without or
with a local search step and a Redirect procedure where the
later one indicated better performance.

As a combination of a shop scheduling problem and a
parallel machine scheduling problem, the complexity of
flexible shop scheduling problems is increased. According to
previous work, the implementation of parallel GAs for this
kind of specific problems is only referred by the island GA.
In addition to design the algorithm, some papers have
considered the influence from the migration by the
connection topology, the migration rate, the migration
interval and the migration strategy. A good cooperation of
these parameters could decentralize the searching space and
enlarge the diversity level to make a GA have better
performance while enjoying a speedup from computing
accelerations. However, current implementations are still
limited. Most of the works address only the improvement to
solutions quality. Experimental results to analyze the
speedup gained from the island GA are not sufficient. As the
increased complexity will lead to longer execution time, it is
interesting to consider GPU to solve related problems whose
native topology is suitable for the island GA with thousands
parallel computing threads.

IV. DESIGN OF HIGH PERFORMANCE COMPUTING
FRAMEWORKS BASED GAS TO SHOP SCHEDULING

PROBLEMS
The preliminary work of parallel GAs for shop

scheduling problems is implemented by fine-grained models
on distributed memory machines. Although the results are
outdated, impressive reduction for the execution time has
been achieved. As the fine-grained GA is easy to be placed
on a spatial structure, to coordinate this design with some
modern HPC accelerators with two-dimensional grid
architecture, such as CUDA, is supposed to optimize its
performance. Moreover, with new requirements from
manufacturing systems in the real life, the complexity of
shop scheduling problems is increasing. The two-
dimensional grid topology could organize a greater amount
of threads to work in parallel, which is more efficient to help
find optimal results of strong NP hard problems with large

instances. The other problems from the operation search
family solved in this way [39] could be persuasive evidences.

The MIMD machine also works with the island GA at the
earlier stage. Soon, it is improved to a parallel computation
environment or a computer cluster equipped with multiple
processors or multi-core processors. The commonly used
parallel processing library MPI is generally chosen for
information sharing through the migration. Meanwhile, GPU
is involved with its special memory management to work
with this design. As there is no strict underlying architecture
limitation to implement the island GA when dealing with
shop scheduling problems, the islands connected topology is
varied. According to the collected papers, the ring topology
is used most frequently. But it is hard to judge which
topology performs the best. Besides, the cooperated
influence between islands connected topology and other
migration parameters cannot be neglected. Fortunately, the
average results confirm the implementations of island GAs
for shop scheduling problems are able to improve solutions
quality and gain a speedup with reasonable migration design.
As this model dominates not only the work on parallel GAs
for shop scheduling problems but also parallel GAs for other
applications, it still has a lot of potential in the future with
the popularity of computing nodes providing multiple
processors or multi-core processors.

Since the master slave GA does not assume underlying
computer architecture, any parallel computing environment
has the chance to use this design without worrying about
sharing information. The most time consuming part for GAs
to shop scheduling problems is the fitness value calculation
that requires even much longer execution time with large
problems. Therefore, GPU equipped with much more
parallel threads is considered to have better performance
among several choices.

V. CONCLUSIONS
As one kind of important problem in combinatorial

optimization problems, applying parallel GAs for solving
shop scheduling problems have caught heavy attentions since
last few decades. This survey addressed some of the most
representative publications in this domain and the reviews
were classified by the most common parallel GA categories:
master-slave models, fine-grained models and island models.
An independent section for hybrid models combining two of
the above methods was not set, as the related work was few.
Those we have considered in this survey were assigned to
one of the three basic models according to their main
designs. Most works of parallel GAs to search optimal
results for scheduling problems in manufacturing systems are
currently managed by the island GA. However, the future of
implementing the other two parallel models to this field is
promising as well by the development of modern computing
accelerators with more parallel threads.

ACKNOWLEDGMENT
This work was supported by a scholarship from the China

Scholarship Council (CSC).

REFERENCES

635

[1] Holland J H. “Genetic algorithms,” Scientific American, 1992,
267(1): 66-73.

[2] Chu P C, Beasley J E. “A genetic algorithm for the multidimensional
knapsack problem,” Journal of heuristics, 1998, 4(1): 63-86.

[3] Gonçalves J F, de Magalhães Mendes J J, Resende M G C. “A hybrid
genetic algorithm for the job shop scheduling problem,” European
journal of operational research, 2005, 167(1): 77-95.

[4] Braun H. “On solving travelling salesman problems by genetic
algorithms,” International Conference on Parallel Problem Solving
from Nature. Springer, Berlin, Heidelberg, 1990: 129-133.

[5] Cantú-Paz E. “A survey of parallel genetic algorithms,” Calculateurs
paralleles, reseaux et systems repartis, 1998, 10(2): 141-171.

[6] Werner F. “Genetic algorithms for shop scheduling problems: a
survey,” Preprint, 2011, 11: 31.

[7] Graham R L, Lawler E L, Lenstra J K, Rinnooy Kan A H G.
“Optimization and approximation in deterministic sequencing and
scheduling: a survey,” Annals of discrete mathematics, 1979, 5: 287-
326.

[8] Xu F, Weng W, Fujimura S. “Energy-Efficient Scheduling for
Flexible Flow Shops by Using MIP,” IIE Annual Conference.
Proceedings. Institute of Industrial and Systems Engineers (IISE),
2014: 1040.

[9] Tang D, Dai M, Salido M A, Giret A. “Energy-efficient dynamic
scheduling for a flexible flow shop using an improved particle swarm
optimization,” Computers in Industry, 2016, 81: 82-95.

[10] Ullman J D. “NP-complete scheduling problems,” Journal of
Computer and System sciences, 1975, 10(3): 384-393.

[11] Wojciech B. “A new class of parallel scheduling algorithms,”
Wroc�aw. Oficyna Wydawnicza Politechniki Wroc�awskiej, 2010.

[12] Cheng R, Gen M, Tsujimura Y. “A tutorial survey of job-shop
scheduling problems using genetic algorithms—I. Representation,”
Computers & industrial engineering, 1996, 30(4): 983-997.

[13] Jebari K, Madiafi M. “Selection methods for genetic algorithms,”
International Journal of Emerging Sciences, 2013, 3(4): 333-344.

[14] AitZai A, Boudhar M, Dabah A. “Parallel CPU and GPU
computations to solve the job shop scheduling problem with
blocking,” 2013.

[15] AitZai A, Benmedjdoub B, Boudhar M. “A branch and bound and
parallel genetic algorithm for the job shop scheduling problem with
blocking,” International Journal of Operational Research, 2012,
14(3): 343-365.

[16] Somani A, Singh D P. “Parallel Genetic Algorithm for solving Job-
Shop Scheduling Problem Using Topological sort,” Advances in
Engineering and Technology Research (ICAETR), 2014 International
Conference on. IEEE, 2014: 1-8.

[17] Mui N H, Hoa V D, Tuyen L T. “A parallel genetic algorithm for the
job shop scheduling problem,” Signal Processing and Information
Technology (ISSPIT), 2012 IEEE International Symposium on. IEEE,
2012: 000019-000024.

[18] Akhshabi M, Haddadnia J, Akhshabi M. “Solving flow shop
scheduling problem using a parallel genetic algorithm,” Procedia
Technology, 2012, 1: 351-355.

[19] Kohlmorgen U, Schmeck H, Haase K. “Experiences with fine grained
parallel genetic algorithms,” Annals of Operations Research, 1999,
90: 203-219.

[20] Tamaki H. “A paralleled genetic algorithm based on a neighborhood
model and its application to the jobshop scheduling,” Parallel
Problem Solving from Nature 2, 1992: 573-582.

[21] Lin S C, Goodman E D, Punch W F. “Investigating parallel genetic
algorithms on job shop scheduling problems,” International

Conference on Evolutionary Programming. Springer, Berlin,
Heidelberg, 1997: 383-393.

[22] Pinel F D R, Dorronsoro B, Bouvry P. “Solving very large instances
of the scheduling of independent tasks problem on the GPU,” Journal
of Parallel and Distributed Computing, 2013, 73(1): 101-110.

[23] Alba E, Dorronsoro B. “Cellular genetic algorithms,” Springer
Science & Business Media, 2009.

[24] Park B J, Choi H R, Kim H S. “A hybrid genetic algorithm for the job
shop scheduling problems,” Computers & industrial engineering,
2003, 45(4): 597-613.

[25] Asadzadeh L, Zamanifar K. “An agent-based parallel approach for
the job shop scheduling problem with genetic algorithms,”
Mathematical and Computer Modelling, 2010, 52(11-12): 1957-1965.

[26] Gu J, Gu X, Gu M. “A novel parallel quantum genetic algorithm for
stochastic job shop scheduling,” Journal of Mathematical Analysis
and Applications, 2009, 355(1): 63-81.

[27] Spanos A C, Ponis S T, Tatsiopoulos I P, Christou I T, Rokou E. “A
new hybrid parallel genetic algorithm for the job shop scheduling
problem,” International Transactions in Operational Research, 2014,
21(3): 479-499.

[28] Huang C S, Huang Y C, Lai P J. “Modified genetic algorithms for
solving fuzzy flow shop scheduling problems and their
implementation with CUDA,” Expert Systems with Applications,
2012, 39(5): 4999-5005.

[29] Zaj�cek T, Šucha P. “Accelerating a Flow Shop Scheduling
Algorithm on the GPU,” eraerts, 2011: 143.

[30] Bo�ejko W, Wodecki M. “Parallel genetic algorithm for the flow
shop scheduling problem,” International Conference on Parallel
Processing and Applied Mathematics. Springer, Berlin, Heidelberg,
2003: 566-571.

[31] Bo�ejko W, Wodecki M. “Parallel genetic algorithm for minimizing
total weighted completion time,” International Conference on
Artificial Intelligence and Soft Computing. Springer, Berlin,
Heidelberg, 2004: 400-405.

[32] Kokosi�ski Z, Studzienny �. “Hybrid genetic algorithms for the
open-shop scheduling problem,” IJCSNS, 2007, 7(9): 136.

[33] Harmanani H M, Drouby F, Ghosn S B. “A parallel genetic algorithm
for the open-shop scheduling problem using deterministic and random
moves,” Proceedings of the 2009 Spring Simulation Multiconference.
Society for Computer Simulation International, 2009: 30.

[34] Ghosn S B, Drouby F, Harmanani H M. “A parallel genetic algorithm
for the open-shop scheduling problem using deterministic and random
moves,” Int. J. Artif. Intell, 2016, 14(1): 130-144.

[35] Defersha F M, Chen M. “A coarse-grain parallel genetic algorithm for
flexible job-shop scheduling with lot streaming,” Computational
Science and Engineering, 2009. CSE'09. International Conference on.
IEEE, 2009, 1: 201-208.

[36] Defersha F M, Chen M. “A parallel genetic algorithm for a flexible
job-shop scheduling problem with sequence dependent setups,” The
international journal of advanced manufacturing technology, 2010,
49(1-4): 263-279.

[37] Belkadi K, Gourgand M, Benyettou M. “Parallel genetic algorithms
with migration for the hybrid flow shop scheduling problem,”
Advances in Decision Sciences, 2006, 2006.

[38] Rashidi E, Jahandar M, Zandieh M. “An improved hybrid multi-
objective parallel genetic algorithm for hybrid flow shop scheduling
with unrelated parallel machines,” The International Journal of
Advanced Manufacturing Technology, 2010, 49(9-12): 1129-1139.

[39] Boyer V, El Baz D. “Recent advances on GPU computing in
operations research,” Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International.
IEEE, 2013: 1778-1787.

636

