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Abstract—There have been extensive works dealing with 
genetic algorithms (GAs) for seeking optimal solutions of shop 
scheduling problems. Due to the NP hardness, the time cost is 
always heavy. With the development of high performance 
computing (HPC) in last decades, the interest has been focused 
on parallel GAs for shop scheduling problems. In this paper, 
we present the state of the art with respect to the recent works 
on solving shop scheduling problems using parallel GAs. It 
showcases the most representative publications in this field by 
the categorization of parallel GAs and analyzes their designs 
based on the frameworks. 

Keywords-shop scheduling; genetic algorithms; parallel 
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I.  INTRODUCTION 
The genetic algorithm (GA) is a stochastic search 

algorithm based on the principle of natural selection and 
recombination [1]. It is a kind of evolutionary algorithm and 
has been successfully applied to solve many optimization 
problems, e.g., knapsack problems, shop scheduling 
problems or travelling salesman problems [2][3][4]. 
Nevertheless, when GAs are applied to more complex and 
larger problems, the required time to find adequate solutions 
is increased. Particularly, repeated fitness function evaluation 
is often the most prohibitive and limiting segment when GAs 
are choosen to find an optimal solution for high-dimensional 
or multimodal implementations. Meanwhile, GAs also suffer 
from the problem of a tendency to converge towards local 
optima rather than the global optimum. Previous works in 
this area suggest to enlarge population size, increase 
mutation rate or hire niche penalty in selection to keep the 
diversity of GAs. However, any of them may raise the 
complexity of the algorithm and lead to more time 
consumption. 

No doubt, parallel implementation is considered as one of 
the most promising choices to make GAs work faster. There 
are different ways of exploiting parallelism in GAs [5]: 
master-slave models, fine-grained models, island models and 
hybrid models. The master-slave model is the only one that 
does not affect the behavior of the algorithm by distributing 
the evaluation of fitness function to slaves. The fine-grained 
model works with a large spatially population. The evolution 
operations are restricted to a small neighborhood with some 
interactions by overlap structure. The island model divides a 
population into subpopulations. Subpopulations on the 
islands are free to converge towards different sub-optima and 

a migration operator can help mix good features that emerge 
from the local island. The hybrid model combines any two of 
the above methods. 

The shop scheduling problem is one of the best known 
combinatorial optimization problems where jobs are 
assigned to machines at particular times. The use of 
evolutionary algorithms for shop scheduling problems 
started around 1980 [6]. There have been a huge number of 
publications dealing with GAs for shop scheduling problems. 
Due to the NP hardness, the time cost to obtain an adequate 
solution by the serial GA is always heavy. With the 
development of high performance computing (HPC) in last 
decades, the implementation of parallel GAs to shop 
scheduling problems has been extensively studied. The 
purpose of this paper is to give a tutorial survey of recent 
works on solving scheduling problems in manufacturing 
systems using parallel GAs.  

The rest of this paper is organized as follows. In section 
2, a brief introduction about shop scheduling problems and 
their new integrated factors are given. Section 3 discusses the 
typical parallel GAs, namely, master-slave models, fine-
grained models and islands models, developed for the 
scheduling problems in manufacturing systems. Section 4 
analyzes the frequently used HPC frameworks and their 
associated parallel GAs design in this domain. Finally, 
conclusions are stated in section 5. 

II. SHOP SCHEDULING PROBLEMS 
The shop scheduling problem is a classic optimization 

problem. One instance of the problem consists of a set of n 
jobs J1, J2, …, Ji , ..., Jn  and a set of o machines M1, M2, …, 
Mm, …, Mo. Each job Ji comprises a number of g stages S1, 
S2, …, Ss, …, Sg. The processing time of one step of Ji on a 
particular machine is denoted as an operation and is 
abbreviated by (j, s, m). Usually, it is given in advance as 
Pjsm with the release time Rj and the due time Dj. 
Additionally, other required conditions are shown in Table 1. 

TABLE I. OTHER REQUIRED CONDITIONS FOR SHOP SCHEDULING PROBLEMS  

NO. Description 

1 Each operation of a job must be processed by one and only one 
machine. 

2 Each machine can process no more than one operation at a time. 
3 Each job is available for processing after the release time.  

4 Setup times for job processing and machine assignment times 
between stages are not taken into consideration.  

5 There is infinite intermediate storage between machines. 
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There are three ways to classify the scheduling problem 
in manufacturing systems by the machine environment, the 
job characteristics and the optimization criterion [7]. Most of 
works concern on the three basic types: a flow-shop, a job-
shop and an open-shop. In a flow-shop, each job passes 
through the machines with the same order whereas a job-
shop enables specified jobs have possibly different machine 
orderings. In an open-shop, there is no particular route 
imposed on jobs. In addition to these three types, flexible 
shops also catch a lot of attentions. It is a combination of a 
shop scheduling problem and a parallel machine scheduling 
problem, in which at least one stage consists of several 
parallel machines [6]. Most of works considered are the 
flexible flow shop or the flexible job shop. 

When a feasible schedule is given, we can compute for 
each Ji: the completion time Cj, the tardiness Tj = max{0, Cj - 
Dj}, and the unit penalty Uj = 1 if Cj > Dj, otherwise 0. The 
most common optimality criteria are the minimization of the 
makespan Cmax, the minimization of the sum of the weighted 
completion time , the minimization of the sum of the 
weighted tardiness , and the minimization of the sum of 
the weighted unit penalty , or any combination among 
them.  

With the development of modern manufacturing, some 
new factors are integrated into the basic shop scheduling 
problems, such as energy controlling, dynamic environment 
and so on. Xu et al. built a discrete-time mixed-integer 
programming model and a slot-based mixed-integer 
programming model in [8] to achieve a global optimal 
solution between the peak power and the traditional 
production efficiency without any compromise on computing 
efficiency. Tang et al. [9] adopted a predictive reactive 
approach based on an improved particle swarm optimization 
to search for the Pareto optimal solution in dynamic flexible 
flow shop scheduling problems reducing the energy 
consumption and the makespan.  

Most shop scheduling problems are known as strong NP-
hard problems [10]. Many works to solve it by exact 
methods and meta-heuristic methods have been done. 
However, this class of problems requires complex and time-
consuming solution algorithms. Although the speed of the 
best supercomputer increases 10 times each 3 or 4 years 
recently, this increase has only a little influence on the size 
of solvable problems [11]. Therefore, efforts to coordinate 
these algorithms with HPC accelerators to solve shop 
scheduling problems efficiently and effectively are deeply 
desirable. 

III. GENETIC ALGORITHMS WITH SCHEDULING PROBLEMS 
IN MANUFACTURING SYSTEMS 

A. Simple Genetic Algorithms 
A simple GA [1] starts with a randomly generated initial 

population consisting of a set of individuals. An individual is 
representative by a chromosome. For flow shop problems, a 
standard chromosome is made of a string of length n, and the 
i-th gene contains the index of the job at position i [6]. An 
individual describes a feasible schedule of jobs’ sequence on 
target machines. For job shop problems, there are two ways 

of chromosome representation: direct way and indirect way. 
The direct way is similar with the way for flow shop 
problems: a feasible schedule is directly encoded into the 
chromosome, whereas the chromosome in the indirect way 
shows a sequence of dispatching rules for job assignment 
[12]. As no imposed technological routes of jobs for open 
shop problems, both of the encoding approaches for the flow 
shop and the job shop can be applied in this case. The fitness 
value of each individual is used to evaluate the current 
population. It is related to the objective function value of 
shop scheduling problems at the point represented by a 
chromosome. Since most common optimality criteria of shop 
scheduling problems are about minimization, The fitness 
function FIT(i) of an individual i usually can be transferred 
as [6]: 

 

where  denotes the objective function value of a feasible 
schedule from individual i and  states the objective function 
value of some heuristic solution. 
As the value of object function for shop scheduling problems 
are generally positive, some papers measure the fitness 
function FIT(i) as: 

 

Three GA operations: selection, crossover and mutation, 
work on these chromosomes to get new search points in a 
state of space. Usually, individuals are first selected through 
a fitness-based process. For shop scheduling problems, 
solutions with larger fitness values are more likely to be 
selected. Some well-known methods are implemented in this 
step: the roulette wheel selection, the stochastic universal 
sampling, the tournament selection and so on [13]. Next, the 
crossover takes two random individuals kept after the 
selection and exchanges random sub-chromosomes. The 
classic methods are the n-point crossover and the uniform 
crossover. Due to particular requirements of different shop 
scheduling problems, additional steps may be required to 
repair the illegal offspring caused by the crossover. The 
mutation then alters some random value within a 
chromosome. Different from the binary encoding, the 
mutation for shop scheduling problems works often based on 
the neighborhoods e.g. shift mutation (insertion 
neighborhood) or pairwise interchange mutation (swap 
neighborhood) to respect feasible solutions. 

TABLE II. PSEUDO-CODE OF THE SIMPLE GA 

1: initialize(); 
2: while (termination criteria are not satisfied) do 
3: Generation++ 
4: Selection(); 
5: Crossover(); 
6: Mutation(); 
7: FitnessValueEvaluation(); 
8: end while 
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The population evaluation is executed after these three 
steps. Sometimes, an elitist strategy is hired afterwards to 
keep limited number of individuals with the best fitness 
values to the next generation. This process repeats until the 
termination criteria have been satisfied. The full procedure is 
stated in Table 2. 

B. Master-Slave Genetic Algorithms 
The master-slave GA is known as global parallel GA as 

well. It keeps a single population as a simple GA that is 
stored at the master side. In this case, each individual is free 
to compete and mate with any other. Since the fitness value 
calculations of individuals are independent and there is no 
communication with others, slaves take care of the fitness 
evaluation in parallel. Data exchange occurs only when 
sending and receiving tasks between the master and slaves. 
Obviously, frequent communication overhead offsets some 
performance gains from slaves’ computing. However, as 
master-slave GA is the easiest parallel model to be 
implemented and does not assume underlying architecture, it 
is still very efficient when the fitness evaluation is complex 
and requires considerable computation. The steps of this 
parallel model are presented in Table 3. 

TABLE III PSEUDO-CODE OF THE MASTER-SLAVE GA 

1: Initialize(); 
2: while (termination criteria are not satisfied) do 
3: Generation++ 
4: Selection(); 
5: Crossover(); 
6: Mutation(); 
7: Parallel_FitnessValueEvaluation_Individuals(); 
9: end while 

1) Job Shop Scheduling Problems 
AitZai et al. modeled the job shop scheduling problem 

with blocking using the alternative graph with conjunctive 
arcs and alternative arcs in [14]. In addition to a parallel 
branch and bound method, two master-slave GA 
parallelization methods were also presented. The first one 
was based on CPU networking with a star network of inter-
connected computers. On the opposite, the second one 
worked on GPU with some memory management respecting 
to CUDA (Compute Unified Device Architecture) 
framework, which was a NVIDIA’s parallel computing 
architecture that increased computing performance by 
harnessing the power of GPU. Numerical tests were carried 
on a station equipped with CPU 2: Intel Xeon E5620 and 
GPU: NVIDIA Quadro 2000 01 Go GPU. With a population 
size 1056 and a limited total execution time 300s, the master-
slave GA using GPU could get maximum 15 times more 
explored solutions than the GA using CPU. Moreover, a 
related earlier work was introduced by AitZai in [15]. In 
order to improve the solution of job shop scheduling 
problems, Somani et al. [16] imposed a topological sorting 
step to the GA before the fitness value calculation, which 
was used to generate the topological sequences of directed 
acyclic graph. The parallel implementation of the proposed 
GA in CUDA environment consisted of two kernels. The 
former one was used for making the topological sequences 

by the help of topological sorting, while the later one was 
hired to calculate the makespan from the longest path 
algorithm. The crossover and the mutation were performed 
between two randomly selected schedules on CPU. 
Experiments was setup with Intel(R) Xeon(R) E5-2650 @ 
2.00 GHz and NVIDA Tesla C2075 (448 cores) and results 
have shown the proposed GA performed around 9 times 
faster for large-scale problems than the sequential GA. 

Another job shop scheduling problem was studied by 
Mui et al. [17] where a prior-rule was used to create active 
schedules. The selection combined the idea of an elitist 
strategy and a roulette wheel selection, whereas the 
crossover took a GT algorithm implemented on three parents 
and the mutation used neighborhood searching technique. 
With this design, the main part of the GA could be computed 
independently. In the parallel environment, a master-slave 
model was employed where the slaves performed the GA 
evolutionary operators concurrently and the master searched 
the global optimum among optimal results received from 
slaves. The proposed method was run on the CSS computer 
server system with 6 computers, in which each computer had 
a Pentium-4 CPU with 4GB free of ram. Empirical results 
have shown the master-slave GA with 6 processors could 
save 3 to 4 times the execution time compared to the 
sequential version. 

2) Flow Shop Scheduling Problems 
A master-slave GA dealing with a single population and 

a group of local subpopulations was presented in [18] for a 
flow shop problem. This method involved a master scheduler 
and a set of slave processors. The master scheduler ran the 
GA operators (partial replacement selection, cycle crossover 
and swapping mutation) of all individuals sequentially. 
When the evolution of one individual was finished, it was 
placed in the unassigned queue from which the master 
scheduler partitioned the fitness value calculation to slave 
processors in batches. The choice of candidate slave 
processors was made upon the involved communication 
overhead and their computational potential. The available 
resources among slave processors in the distributed system 
could vary over time. Moreover, all individuals were 
maintained in the master scheduler synchronously. The 
proposed GA was implemented on a laptop with Prentium IV 
core 2 Duo 2.53 GHz CPU. The outputs showed the new 
algorithm could be 9 times faster maximally than the results 
of serial GA achieved by the Lingo 8 software.  

Attentions to use master-slave GA to shop scheduling 
problems are increased in the last decade and the work is 
carried with various underlying architectures. Since only 
independent tasks are executed on slaves without 
communication cost among them, both the conventional GA 
and any improved GAs can be implemented with it easily. 
Although the communication between the master and the 
slaves is an impediment in speed, it still performs well to 
solve shop scheduling problems whose fitness value 
calculation is complex and requires considerable 
computation. 
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C. Fine-grained Genetic Algorithms 
The fine-grained GA can also be called as neighborhood 

GA, diffusion GA or massively parallel GA. The main idea 
is to map individuals of a single GA population on a spatial 
structure. An individual is limited to compete and mate with 
its neighbors, while the neighborhoods overlapping makes 
good solutions disseminate through the entire population. 
This model obtains good population diversity when dealing 
with high-dimensional variable spaces [19]. Meanwhile, it is 
easy to be placed in any two dimensional grid, as many 
massively parallel machines are designed with this topology. 
However, we cannot neglect the great influence from the 
spatial structure, which generally has little chance to be 
modified. The implemented process of the fine-grained GA 
is shown in Table 4. 

TABLE IV PSEUDO-CODE OF THE FINE-GRAINED GA 

1: Initialize(); 
2: while (termination criteria are not satisfied) do 
3: Generation++ 
4: Parallel_NeighborhoodSelection_Individuals(); 
5: Parallel_NeighborhoodCrossover_Individuals(); 
6: Parallel_Mutation_Individuals(); 
7: Parallel_FitnessValueEvaluation_Individuals(); 
8: end while 

1) Job Shop Scheduling Problems 
A fine-grained GA solving job shop scheduling problems 

was considered by Tamaki et al. [20]. In this paper, the 
selection was executed locally in a neighborhood of each 
population. The objectives of this neighborhood model were 
to improve search in the GA by suppressing favorably the 
premature convergence phenomena, and to reduce 
computational time by implementing it on a parallel 
computer at the same time. The method was then modified as 
an absolute neighborhood model and implemented on 
Transputer. Transputer was a MIMD (Multi-Instruction 
Multi-Data) machine with microprocessors, featuring 
integrated memory and serial communication links. Through 
several computational experiments for job shop scheduling 
problems, the parallel GA with 16 processors could shorten 
the calculation time dramatically. However, as Transputer 
did not equip with shared memory, the information exchange 
was handled through communication operations. Therefore, 
the calculation time reduction was not able to reach an ideal 
level. Lin et al. [21] investigated parallel GAs on job shop 
scheduling problems with a direct solution representation, 
which encoded the operation starting times. The GA 
operators were inspired by the G&T algorithm with the 
random selection, the THX (time horizon exchange) 
crossover and the THX mutation. Two hybrid models built 
up by the fine-grained GA with a two-dimensional torus 
topology and the island GA connected in a ring were 
discussed in this paper. The first one was an embedding of 
the fine-grained GA into the island GA, in which each 
subpopulation on the ring was a torus. The migration on the 
ring was much less frequent than within the torus. In the 
second model, the connection topology used in the island 
GA was one which is typically found in the fine-grained GA, 

and a relatively large number of nodes were used. The 
migration frequency kept the same in the island GA. Those 
two methods were carried on a Sun Ultra 1 which was a 
family of Sun Microsystems workstations based on the 64-
bit Ultra SPARC microprocessor with a single population 
GA, two island GAs of different subpopulation sizes and one 
torus fine-grained GA. The execution time comparison was 
only made between the single population GA and two island 
GAs with the speedup of 4.7 and 18.5 respectively. 
Regarding to solutions quality, best results were obtained by 
the hybrid model consisting of island GAs connected in a 
fine-grained GA style topology by combing the merits from 
them. 

Compared with other two kinds of parallel GA, it seems 
the implementation of fine-grained GA for shop scheduling 
problems is rare and outdated, no matter the amount of 
related papers or the various types of treated problems. 
Along the development of modern computing accelerators 
with two-dimensional grid environment, like GPU, this 
implementation has a lot of potential in the near future. Apart 
form manufacturing systems, the fine-grained GA is also 
used for task scheduling problems [22]. It is another type of 
scheduling problems that focuses on minimizing the 
makespan as well but for a set of tasks to be executed in 
multiprocessor systems. In this domain, the fine-grained 
model is treated sometimes as parallel cellular GA [23]. 

D. Island Genetic Algorithms 
The island model is the most famous for the research on 

parallel GAs. In some papers, it may be called as coarse-
grained models, multi-deme models, multi-population 
models, migration models or distributed models. Unlike 
previous parallel GAs, this model divides the population into 
a few relatively large subpopulations. Each of them works as 
an island and is free to converge towards its own sub-optima. 
At some points, a migration operator is utilized to exchange 
individuals among islands. These configurations make the 
average population fitness improve faster and mix good local 
feature efficiently [5]. The main idea of this parallelization is 
a simple extension of the serial GA while the island model 
based underlying architecture is easily available. Therefore, 
the island GA dominates the work on parallel GAs for shop 
scheduling problems. A brief outline about this algorithm is 
illustrated in Table 5. 

TABLE V PSEUDO-CODE OF THE ISLAND GA 

1: Initialize(); 
2: while (termination criteria are not satisfied) do 
3: Generation++ 
4: Parallel_SubSelection_Islands(); 
5: Parallel_SubCrossover_Islands(); 
6: Parallel_SubMutation_Individuals (); 
7: Parallel_FitnessValueEvaluation_Individuals(); 
8: if (generation % migration interval==0)  
9: Parallel_Migration_Islands(); 
10: end if  
11: end while 

1) Job Shop Scheduling Problems 
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Park et al. [24] studied a hybrid GA and its parallel 
version for job shop scheduling problems with an operation-
based representation. Concerning the parallel GA, the 
population was divided into two or four subpopulations. 
Each subpopulation acted as a single-population GA, where 
some individuals could migrate from one subpopulation to 
another at certain intervals. As four population initialization 
methods, four crossover operators and two selection 
operators were proposed in this paper, different 
subpopulations were equipped with different settings to help 
them evolve independently. Beside, the migration was 
implemented synchronously with a static ring type 
connection scheme. Experiments were carried out on a PC 
with Pentium II 350 and 64MB main memory with MT, 
ORB and ABZ benchmark problems. The outputs confirmed 
the island GA improved not only the best solution but also 
the average solution from results of single GA. Asadzadeh et 
al. addressed a parallel agent-based GA for a job shop 
scheduling problem in [25]. Chromosomes of the population, 
indicating feasible schedules for problem instances were 
created by the management agent and the execute agent. 
Afterwards, the management agent divided it into 
subpopulations with the same size and sent each of them to 
processor agents. Each processor agent located on a distinct 
host and executed GA with a roulette wheel selection, a 
partially matched crossover and a subsequent gene mutation 
on its subpopulation independently. Different subpopulations 
communicated by exchanging migrants through the 
synchronization agent. The number of processor agents was 
fixed at eight in the experiments. Furthermore, those agents 
formed a virtual cube amongst themselves and each of them 
had three neighbors. JADE middleware was used to 
implement this method, which was a software development 
framework aiming at developing multi-agent systems. 
Compared with the serial agent-based GA, the suggested 
algorithm obtained much short schedule lengths and had 
higher convergence speed with large size problems. In [26]. 
Gu et al. constructed a stochastic job shop scheduling 
problem by a stochastic expected value model. It was solved 
by a parallel quantum GA organized by the island model 
with a hybrid star-shaped topology. The information 
communication was performed through a penetration 
migration at the upper level and through a quantum 
crossover at the lower lever. Besides, the roulette wheel 
selection, the cycle crossover and the Not Gate mutation 
were designed as GA operators. Computational tests were 
run on a PC with a Pentium Processor with clock speed of 
1.66 GHZ. On the average, the advised method had a better 
performance of generating optimal or near-optimal solutions 
with fast convergence speed than a GA or a quantum GA for 
large instance problems. Spanous et al. [27] designed a 
parallel GA for solving job shop scheduling problems with 
an elitist strategy based selection, a path relinking crossover 
and a swap mutation. The parallelization was set following 
the islands paradigm. However, one subpopulation merged 
with another one once the individuals inside stagnated, 
where the Hamming distance of more than half individuals 
were less than a predefined value. The process continued 
until there was only one subpopulation. Experiments were 

performed on a commodity workstation with a Pentium IV 
CPU running at 2 GHz with 1 GB RAM, The results 
indicated the addressed algorithm managed to attain a 
comparable performance with five recent approaches. 

2) Flow Shop Scheduling Problems 
Huang et al. [28] discussed flow shop scheduling 

problems with fuzzy processing times and fuzzy due dates, 
where the possibility and necessity measures with exact 
formulas were adopted to maximize the earliness and 
tardiness simultaneously. A modified GA was designed to 
solve the problems with the random keys, the parameterized 
uniform crossover and the immigration. If Pt was the family 
of chromosomes in the t-th generation, then |Pt| denoted the 
population size of Pt. The next generation was made of a% 
best chromosomes from Pt, b% chromosomes for taking 
crossovers, and c% chromosomes generated randomly as 
immigrations, where a+b+c=100. In order to get more 
efficient convergence, an idea of the longest common 
substring and rearranging of the chromosomes chosen in the 
mating pool were also imposed in the algorithm. The full 
procedure was coded on CUDA by separating the whole 
population into blocks using the block size of 256 or 128. 
Circumventing to load the random keys of all chromosomes 
to global memory, one chromosome was distributed to a 
block so that all random keys could fit in the shared memory. 
Although there was no migration among blocks, the idea was 
organized based on the island GA. In the case of 200 jobs, 
the numerical simulations on a 2.33 GHz Intel Core2 Quad 
desktop computer with 2 GB of RAM, and an NVIDIA 
GeForce GTX285 graphics card showed that the proposed 
GA combining with CUDA parallel computation got 19 
times speedup. Similarly, Zajicek et al. [29] proposed a 
homogeneous parallel GA model on the CUDA architecture, 
where all computations were carried out on the GPU in order 
to reduce communication between CPU and GPU. The main 
idea was based on an island GA with a tournament selection, 
an arithmetic crossover and a Gaussian mutation. 
Experiments were carried on a system with AMD Phenom II 
X4 945 3.0 GHz processor and NVIDIA Tesla C1060 GPU. 
Some instances of the flow shop scheduling problem were 
solved with speedup from 60 to 120 comparing to the 
equivalent sequential CPU version.  

Bo�ejko et al. proposed a parallel GA for flow shop 
scheduling problems in [30]. The algorithm was based on an 
island model. To implementations, a Multi-Step Crossover 
Fusion was used to construct a new individual using the best 
individuals of different subpopulations and worked with the 
migration operator to complete the communication between 
different islands. Tests were performed on 4-processors Sun 
Enterprise 4x400 MHz under the Solaris 7 operating system, 
which is a MIMD machine of processors without shared 
memory. Four crossover operators and four mutation 
operators were considered as GA operators. The efficiency 
of the island GA was activated with the combination of three 
strategies: with the same or different start subpopulations, as 
independent or cooperative search islands and with the same 
or different genetic operators. Results turned out the strategy 
of starting the computation from different subpopulations on 
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every processor with different crossover operators and 
cooperation was significantly better than others. The 
improvement of the distance to reference solutions and the 
improvement of the standard deviation were at the level of 
7% and 40% respectively, comparing to the sequential GA. 
A related work by the same team to minimize the total 
weighted completion time for the flow shop problem with a 
special case of a single machine was solved by a similar 
island GA in [31]. The results noted the 8-processors 
implementation performed the best. 

3) Open Shop Scheduling Problems 
Kokosi�ski et al. [32] studied an open shop scheduling 

problem and two greedy heuristics, LPT-Task and LPT-
Machine, were proposed for decoding chromosomes 
represented by permutations with repetitions. The GA 
operators constituted a 2-elements tournament selection, a 
linear order crossover and a swap mutation or an invert 
mutation with constant or variable mutation probabilities. An 
island GA with a migration strategy was applied to the 
parallel version in which every island sent its best emigrants 
to all other islands and received immigrants from them. 
Incoming individuals replaced the chromosomes of host 
subpopulation randomly. The experimental platform was a 
PC with Pentium 4 processor (3.06 GHz) and 1 GB RAM. 
Unfortunately, this parallelization did not reveal obvious 
advantages in the results. A non-preemptive open shop 
scheduling problem was discussed by Harmanani et al [33]. 
Except a feasible solution, a chromosome in this paper 
included a scratch area through which a ReduceGap 
operation communicated to GA operators: the crossover and 
the mutation. A hybrid island GA was hired to organize the 
parallelization where neighboring islands shared their best 
chromosomes every GN generation and all islands 
broadcasted their best chromosome to all other islands every 
LN generations, where GN � LN. Islands were connected 
through an Ethernet network and used the Message Passing 
Interface (MPI) on a Beowulf cluster. The experiments were 
executed on a cluster of five machines that were running 
Linux and MPI. The outputs presented that the proposed 
method converged to a good solution quickly before it 
saturated with a speedup between 2.28 and 2.89 for large 
instances. A similar work was carried by Ghosn et al. in [34] 
later. 

Regarding to solve shop scheduling problems by the 
island GA, various researches have been done with different 
architectures. We can discover that the works with GPU pay 
heavier attention on speedup gained from the island GA. On 
the opposite, the others consider more the improvement for 
solutions quality and convergence speed. Few 
implementations have discussed them simultaneously with a 
fair comparison. Besides, the island connection topology is 
varied from different papers with different migration 
strategies. Some of the designs are carried with respect to the 
underlying architectures, whereas the others are proposed 
from supporting theories. However, a completely 
understanding for the effects of migration is still missing. 

 

4) Flexible Shop Scheduling Problems 
Defersha et al. [35] considered an island GA for a 

flexible job shop scheduling problem with lot streaming. In 
this case, the batch of each job was split into certain number 
of unequal consistent sublots. Each sublot of a job underwent 
a number of operations in a fixed sequence where each 
operation could be processed by one of several eligible 
machines. Three commonly used migration topologies: ring, 
mesh and fully connected were discussed in this paper with a 
k-way tournament selection, five kinds of crossover and six 
kinds of mutation applied by different probabilities. A 
parallel computation environment composed more than 250 
interconnected workstations each having an 8-core Intel 
Xeon 2.8GHz processor was used for experiments. Test 
problems were run using up to 48 cores and taking MPI for 
communication. With all problems considered, there were 
makespan reductions through the island GA. Meanwhile, 
empirical studies presented the impact from its different 
parameters. Regarding to topologies, the fully connected one 
outperformed other two. Three migration policies: random-
replace-random, best-replace-random and best-replace-worst 
were tested. Results showed the island GA was not much 
sensitive to the change of migration policy while the best-
replace-random migration policy performed better slightly. 
The same authors built a mathematical model for a flexible 
job shop scheduling problem incorporating sequence-
dependent setup time, attached or detached setup time, 
machine release dates, and time lag requirements in [36]. 
Like the previous work, the GA operators constituted a k-
way tournament selection, three assignment operators and 
two sequencing operators applied by different probabilities. 
However, islands were connected with a randomly topology 
which employed randomly generated migration routes for 
each communication epoch. The method was tested on a 
similar experimental platform. Results of medium size 
problems showed the island GA helped improve the 
solutions quality and it converged to a better solution within 
the allowable computational time for large size problems 
where the single GA failed.  

An island GA for flexible flow shop scheduling problems 
was addressed by Belkadi et al. [37] where genome 
constituted one assignment chromosome and a sequencing 
chromosome. The GA was implemented on a biprocessor 
architecture with a roulette wheel selection, a uniform 
crossover and a mutation similar to the crossover but 
operated only on the sequencing scheduling chromosomes. 
Four combinations from two island connected typologies 
(ring and grid with two dimensions) and two replacement 
strategies (best and random) were tested. The results noted 
those two parameters did not have significant influence in 
the variation of makespan. Regarding to the subpopulation 
size and its related subpopulation amount, the quality of the 
solution decreased progressively at the same time as the 
number of subpopulations increased based on the 
experiments. However, when the complexity of the problem 
rose up, this influence reduced. Finally, outputs stated the 
migration interval was the parameter that had the decision 
influence to the island GA where the quality of the solution 
improved gradually with increasing migration frequency. A 
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comparison between the island GA and the sequential GA 
was also carried in this paper. According to empirical results, 
the island GA always obtained a smaller makespan while its 
performance of execution time was only discussed with 
theoretical values based on two processors. Rashidi et al. 
[38] studied flexible flow shop scheduling problems with 
unrelated parallel machines, sequence-dependent setup times 
and processor blocking to minimize the makespan and the 
maximum tardiness. Different weights were assigned to two 
criteria to transform the problem into a single-objective 
function. The individuals inside one island sought for their 
own single-objective function, and all islands worked in 
parallel for Pareto optimal solutions. The paired weights in 
different islands are different with a small deviation between 
each successive pairs. After executing the conventional GA 
operators, a local search step or a Redirect procedure were 
implemented to further cover the Pareto solutions. A 
comparison was carried between the island GA without or 
with a local search step and a Redirect procedure where the 
later one indicated better performance.  

As a combination of a shop scheduling problem and a 
parallel machine scheduling problem, the complexity of 
flexible shop scheduling problems is increased. According to 
previous work, the implementation of parallel GAs for this 
kind of specific problems is only referred by the island GA. 
In addition to design the algorithm, some papers have 
considered the influence from the migration by the 
connection topology, the migration rate, the migration 
interval and the migration strategy. A good cooperation of 
these parameters could decentralize the searching space and 
enlarge the diversity level to make a GA have better 
performance while enjoying a speedup from computing 
accelerations. However, current implementations are still 
limited. Most of the works address only the improvement to 
solutions quality. Experimental results to analyze the 
speedup gained from the island GA are not sufficient. As the 
increased complexity will lead to longer execution time, it is 
interesting to consider GPU to solve related problems whose 
native topology is suitable for the island GA with thousands 
parallel computing threads.  

IV. DESIGN OF HIGH PERFORMANCE COMPUTING 
FRAMEWORKS BASED GAS TO SHOP SCHEDULING 

PROBLEMS 
The preliminary work of parallel GAs for shop 

scheduling problems is implemented by fine-grained models 
on distributed memory machines. Although the results are 
outdated, impressive reduction for the execution time has 
been achieved. As the fine-grained GA is easy to be placed 
on a spatial structure, to coordinate this design with some 
modern HPC accelerators with two-dimensional grid 
architecture, such as CUDA, is supposed to optimize its 
performance. Moreover, with new requirements from 
manufacturing systems in the real life, the complexity of 
shop scheduling problems is increasing. The two-
dimensional grid topology could organize a greater amount 
of threads to work in parallel, which is more efficient to help 
find optimal results of strong NP hard problems with large 

instances. The other problems from the operation search 
family solved in this way [39] could be persuasive evidences. 

The MIMD machine also works with the island GA at the 
earlier stage. Soon, it is improved to a parallel computation 
environment or a computer cluster equipped with multiple 
processors or multi-core processors. The commonly used 
parallel processing library MPI is generally chosen for 
information sharing through the migration. Meanwhile, GPU 
is involved with its special memory management to work 
with this design. As there is no strict underlying architecture 
limitation to implement the island GA when dealing with 
shop scheduling problems, the islands connected topology is 
varied. According to the collected papers, the ring topology 
is used most frequently. But it is hard to judge which 
topology performs the best. Besides, the cooperated 
influence between islands connected topology and other 
migration parameters cannot be neglected. Fortunately, the 
average results confirm the implementations of island GAs 
for shop scheduling problems are able to improve solutions 
quality and gain a speedup with reasonable migration design. 
As this model dominates not only the work on parallel GAs 
for shop scheduling problems but also parallel GAs for other 
applications, it still has a lot of potential in the future with 
the popularity of computing nodes providing multiple 
processors or multi-core processors. 

Since the master slave GA does not assume underlying 
computer architecture, any parallel computing environment 
has the chance to use this design without worrying about 
sharing information. The most time consuming part for GAs 
to shop scheduling problems is the fitness value calculation 
that requires even much longer execution time with large 
problems. Therefore, GPU equipped with much more 
parallel threads is considered to have better performance 
among several choices.  

V. CONCLUSIONS 
As one kind of important problem in combinatorial 

optimization problems, applying parallel GAs for solving 
shop scheduling problems have caught heavy attentions since 
last few decades. This survey addressed some of the most 
representative publications in this domain and the reviews 
were classified by the most common parallel GA categories: 
master-slave models, fine-grained models and island models. 
An independent section for hybrid models combining two of 
the above methods was not set, as the related work was few. 
Those we have considered in this survey were assigned to 
one of the three basic models according to their main 
designs. Most works of parallel GAs to search optimal 
results for scheduling problems in manufacturing systems are 
currently managed by the island GA. However, the future of 
implementing the other two parallel models to this field is 
promising as well by the development of modern computing 
accelerators with more parallel threads. 
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