Scheduling and SAT

Emmanuel Hebrard

Toulouse

Outline

- Introduction
- 2 Scheduling and SAT Encoding
- 3 Scheduling and SAT Heuristics
- Scheduling and SAT Hybrids
- Conclusion

Outline

- Introduction
 - Preamble
 - Scheduling Background
 - SAT Background
 - Formulation into SAT
- 2 Scheduling and SAT Encoding
- 3 Scheduling and SAT Heuristics
- Scheduling and SAT Hybrids
- Conclusion

• Number of hits for the Google query "Scheduling problem" with ...

• Number of hits for the Google query "Scheduling problem" with ...

130,000

"Mixed Integer Programming" "Constraint Programming" "Boolean Satisfiability" OR

"Integer Linear Programming"

• Number of hits for the Google query "Scheduling problem" with ...

130,000

"Mixed Integer Programming"

OR

"Integer Linear Programming"

60,000

"Constraint Programming"

"Boolean Satisfiability"

• Number of hits for the Google query "Scheduling problem" with ...

130,000

"Mixed Integer Programming"
OR

"Integer Linear Programming"

60,000

"Constraint Programming"

21,000

 $"Boolean\ Satisfiability"$

- Important theoretical results
 - ► [Cook-Levin] theorem: "First" NP-complete problem
 - ► [Schaefer]'s dichotomy theorem
- Efficient algorithms (CDCL)
- Successful in Circuit design, Model checking, Planning, ...

- Important theoretical results
 - ► [Cook-Levin] theorem: "First" NP-complete problem
 - ► [Schaefer]'s dichotomy theorem
- Efficient algorithms (CDCL)
- Successful in Circuit design, Model checking, Planning, ...

- Important theoretical results
 - ► [Cook-Levin] theorem: "First" NP-complete problem
 - ► [Schaefer]'s dichotomy theorem
- Efficient algorithms (CDCL)
- Successful in Circuit design, Model checking, Planning, ...

Association of scheduling and SAT not as natural as MIP or CP

• Somewhat counter-intuitive (Boolean vs. Range, logical operator)

- Important theoretical results
 - ► [Cook-Levin] theorem: "First" NP-complete problem
 - ► [Schaefer]'s dichotomy theorem
- Efficient algorithms (CDCL)
- Successful in Circuit design, Model checking, Planning, ...

- Somewhat counter-intuitive (Boolean vs. Range, logical operator)
 - Apparent issue, the numerical aspect can often be avoided

- Important theoretical results
 - ► [Cook-Levin] theorem: "First" NP-complete problem
 - ► [Schaefer]'s dichotomy theorem
- Efficient algorithms (CDCL)
- Successful in Circuit design, Model checking, Planning, ...

- Somewhat counter-intuitive (Boolean vs. Range, logical operator)
 - Apparent issue, the numerical aspect can often be avoided
- Efficiency? SAT Solvers have not always been good

- Important theoretical results
 - ► [Cook-Levin] theorem: "First" NP-complete problem
 - ► [Schaefer]'s dichotomy theorem
- Efficient algorithms (CDCL)
- Successful in Circuit design, Model checking, Planning, ...

- Somewhat counter-intuitive (Boolean vs. Range, logical operator)
 - Apparent issue, the numerical aspect can often be avoided
- Efficiency? SAT Solvers have not always been good
 - ▶ They have made huge progress in the past 10 years

- Important theoretical results
 - ► [Cook-Levin] theorem: "First" NP-complete problem
 - ► [Schaefer]'s dichotomy theorem
- Efficient algorithms (CDCL)
- Successful in Circuit design, Model checking, Planning, ...

- Somewhat counter-intuitive (Boolean vs. Range, logical operator)
 - Apparent issue, the numerical aspect can often be avoided
- Efficiency? SAT Solvers have not always been good
 - ▶ They have made huge progress in the past 10 years
- All the approaches discussed here were developed in the last 5 years

- Important theoretical results
 - ► [Cook-Levin] theorem: "First" NP-complete problem
 - ► [Schaefer]'s dichotomy theorem
- Efficient algorithms (CDCL)
- Successful in Circuit design, Model checking, Planning, ...

- Somewhat counter-intuitive (Boolean vs. Range, logical operator)
 - Apparent issue, the numerical aspect can often be avoided
- Efficiency? SAT Solvers have not always been good
 - They have made huge progress in the past 10 years
- All the approaches discussed here were developed in the last 5 years
- Recent progress in SAT algorithms opens new research opportunities

Scheduling Problems

Terminology

- Tasks (preemptive, non-preemptive)
- Resources (disjunctive, cumulative, reservoir,...)
- Objectives (makespan, tardiness, flow time,...)
- Side constraints (precedence, time windows, time lags,...)

Scheduling Problems

Terminology

- Tasks (preemptive, non-preemptive)
- Resources (disjunctive, cumulative, reservoir,...)
- Objectives (makespan, tardiness, flow time,...)
- Side constraints (precedence, time windows, time lags,...)

Tip of the iceberg

- SAT-based methods have been applied to a very small subset scheduling problems.
 - Minimization of makespan for non-preemptive tasks and disjunctive resources

Organized in jobs (sequences)

- A set of non-preemptive tasks
- Organized in jobs (sequences)
- Requiring one of *m* disjunctive resources

- A set of non-preemptive tasks
- Organized in jobs (sequences)
- Requiring one of *m* disjunctive resources

- A set of non-preemptive tasks
- Organized in jobs (sequences)
- Requiring one of *m* disjunctive resources

- A set of non-preemptive tasks
- Organized in jobs (sequences)
- Requiring one of *m* disjunctive resources

- A set of non-preemptive tasks
- Organized in jobs (sequences)
- Requiring one of *m* disjunctive resources
- Objective: minimize the total duration (C_{max})

- Boolean variables (atoms)
- Propositional logic formula (often CNF)

- Boolean variables (atoms)
- Propositional logic formula (often CNF)
- Literals: a, ā

- Boolean variables (atoms)
- Propositional logic formula (often CNF)
- Literals: a, ā
- Clauses: $(\overline{a} \lor \overline{f} \lor g)$, $(\overline{a} \lor \overline{f} \lor g)$, $(\overline{a} \lor \overline{b})$, $(b \lor \overline{c} \lor g)$

- Boolean variables (atoms)
- Propositional logic formula (often CNF)
- Literals: a, ā
- Clauses: $(\overline{a} \lor \overline{f} \lor g)$, $(\overline{a} \lor \overline{f} \lor g)$, $(\overline{a} \lor \overline{b})$, $(b \lor \overline{c} \lor g)$
- Solution: assignment of atoms satisfying all clauses

Problem

- Boolean variables (atoms)
- Propositional logic formula (often CNF)
- Literals: a, ā
- Clauses: $(\overline{a} \lor \overline{f} \lor g)$, $(\overline{a} \lor \overline{f} \lor g)$, $(\overline{a} \lor \overline{b})$, $(b \lor \overline{c} \lor g)$
- Solution: assignment of atoms satisfying all clauses

Problem

- Boolean variables (atoms)
- Propositional logic formula (often CNF)
- Literals: a, ā
- Clauses: $(\overline{a} \lor \overline{f} \lor g)$, $(\overline{a} \lor \overline{f} \lor g)$, $(\overline{a} \lor \overline{b})$, $(b \lor \overline{c} \lor g)$
- Solution: assignment of atoms satisfying all clauses

Algorithms

Stochastic local search (GSAT, WalkSat,...)

Problem

- Boolean variables (atoms)
- Propositional logic formula (often CNF)
- Literals: a, ā
- Clauses: $(\overline{a} \lor \overline{f} \lor g)$, $(\overline{a} \lor \overline{f} \lor g)$, $(\overline{a} \lor \overline{b})$, $(b \lor \overline{c} \lor g)$
- Solution: assignment of atoms satisfying all clauses

- Stochastic local search (GSAT, WalkSat,...)
- Survey propagation

Problem

- Boolean variables (atoms)
- Propositional logic formula (often CNF)
- Literals: a, ā
- Clauses: $(\overline{a} \lor \overline{f} \lor g)$, $(\overline{a} \lor \overline{f} \lor g)$, $(\overline{a} \lor \overline{b})$, $(b \lor \overline{c} \lor g)$
- Solution: assignment of atoms satisfying all clauses

- Stochastic local search (GSAT, WalkSat,...)
- Survey propagation
- DPLL: Tree search + Unit propagation

Problem

- Boolean variables (atoms)
- Propositional logic formula (often CNF)
- Literals: a, ā
- Clauses: $(\overline{a} \lor \overline{f} \lor g)$, $(\overline{a} \lor \overline{f} \lor g)$, $(\overline{a} \lor \overline{b})$, $(b \lor \overline{c} \lor g)$
- Solution: assignment of atoms satisfying all clauses

- Stochastic local search (GSAT, WalkSat,...)
- Survey propagation
- DPLL: Tree search + Unit propagation
- CDCL: Conflict Driven Clause learning

Conflict Driven Clause Leaning (CDCL)

Conflict Driven Clause Leaning (CDCL)

"Evolved" from DPLL

- Turning point: clause learning ([GRASP] then [Chaff])
 - First SAT-Solver competition in 2002

- Turning point: clause learning ([GRASP] then [Chaff])
 - ► First SAT-Solver competition in 2002
- Dive in the "search tree" (make decisions)
 - ▶ Unit propagate: if a must be true, then a cannot satisfy a clause

- Turning point: clause learning ([GRASP] then [Chaff])
 - ► First SAT-Solver competition in 2002
- Dive in the "search tree" (make decisions)
 - ▶ Unit propagate: if a must be true, then a cannot satisfy a clause
 - ▶ $\overline{a} \lor b \lor \overline{c}$ effectively becomes $b \lor \overline{c}$
 - ★ continue until a fix point is reached

- Turning point: clause learning ([GRASP] then [Chaff])
 - ► First SAT-Solver competition in 2002
- Dive in the "search tree" (make decisions)
 - ▶ Unit propagate: if a must be true, then a cannot satisfy a clause
 - ▶ $\overline{a} \lor b \lor \overline{c}$ effectively becomes $b \lor \overline{c}$
 - ★ continue until a fix point is reached
- Until reaching a conflicts (dead-end)
 - Extract a learned clause
 - ▶ Backjump several levels and unit-propagate the learned clause

- Turning point: clause learning ([GRASP] then [Chaff])
 - First SAT-Solver competition in 2002
- Dive in the "search tree" (make decisions)
 - ▶ Unit propagate: if a must be true, then a cannot satisfy a clause
 - ▶ $\overline{a} \lor b \lor \overline{c}$ effectively becomes $b \lor \overline{c}$
 - ★ continue until a fix point is reached
- Until reaching a conflicts (dead-end)
 - Extract a learned clause
 - ▶ Backjump several levels and unit-propagate the learned clause
- Adaptive branching heuristics (weight conflicting literals)

- Turning point: clause learning ([GRASP] then [Chaff])
 - ► First SAT-Solver competition in 2002
- Dive in the "search tree" (make decisions)
 - ▶ Unit propagate: if a must be true, then a cannot satisfy a clause
 - ▶ $\overline{a} \lor b \lor \overline{c}$ effectively becomes $b \lor \overline{c}$
 - ★ continue until a fix point is reached
- Until reaching a conflicts (dead-end)
 - Extract a learned clause
 - Backjump several levels and unit-propagate the learned clause
- Adaptive branching heuristics (weight conflicting literals)
- And also: restart, simplify the clause base, forget clauses, etc.

f	

$\overline{a} \vee \overline{f} \vee g$	$c \lor h \lor n \lor \overline{m}$
$\overline{a} \lor \overline{b} \lor \overline{h}$	$c \vee I$
$a \lor c$	$d \vee \overline{k} \vee I$
$a \vee \overline{i} \vee \overline{l}$	$d \vee \overline{g} \vee I$
$a \lor \overline{k} \lor \overline{j}$	$\overline{g} \lor n \lor o$
$b \lor d$	$h \vee \overline{o} \vee \overline{j} \vee n$
$b \vee g \vee \overline{n}$	$\overline{i} \lor j$
$b \vee \overline{f} \vee n \vee k$	$\overline{d} \vee \overline{l} \vee \overline{m}$
$\overline{c} \lor k$	$\overline{e} \lor m \lor \overline{n}$
$\overline{c} \vee \overline{k} \vee \overline{i} \vee I$	$\overline{f} \lor h \lor i$

$\overline{a} \vee \overline{f} \vee g$
$\overline{a} \vee \overline{b} \vee \overline{h}$
$a \lor c$
$a \vee \overline{i} \vee \overline{l}$
$a \vee \overline{k} \vee \overline{j}$
$b \lor d$
$b \vee g \vee \overline{n}$
$b \vee \overline{f} \vee n \vee k$
$\overline{c} \lor k$
$\overline{c} \vee \overline{k} \vee \overline{i} \vee I$

$$c \lor h \lor n \lor \overline{m}$$

$$c \lor l$$

$$d \lor \overline{k} \lor l$$

$$d \lor \overline{g} \lor l$$

$$\overline{g} \lor n \lor o$$

$$h \lor \overline{o} \lor \overline{j} \lor n$$

$$\overline{i} \lor j$$

$$\overline{d} \lor \overline{l} \lor \overline{m}$$

$$\overline{e} \lor m \lor \overline{n}$$

$$\overline{f} \lor h \lor i$$

$\overline{a} \vee \overline{\underline{f}} \vee \underline{g}$
$\overline{a} \lor b \lor h$
$a \lor c$
$a \vee \overline{i} \vee \overline{l}$
$a \vee \overline{k} \vee \overline{j}$
$b \lor d$
$b \vee g \vee \overline{n}$
$b \vee \overline{f} \vee n \vee k$
$\overline{c} \lor k$
$\overline{c} \vee \overline{k} \vee \overline{i} \vee I$

$$c \lor h \lor n \lor \overline{m}$$

$$c \lor l$$

$$d \lor \overline{k} \lor l$$

$$d \lor \overline{g} \lor l$$

$$\overline{g} \lor n \lor o$$

$$h \lor \overline{o} \lor \overline{j} \lor n$$

$$\overline{i} \lor j$$

$$\overline{d} \lor \overline{l} \lor \overline{m}$$

$$\overline{e} \lor m \lor \overline{n}$$

$$\overline{f} \lor h \lor i$$

$\overline{a} \vee \overline{f} \vee g$
$\overline{a} \vee \overline{b} \vee \overline{h}$
$a \lor c$
$a \vee \overline{i} \vee \overline{I}$
$a \vee \overline{k} \vee \overline{j}$
$b \lor d$
$b \vee g \vee \overline{n}$
$b \vee \overline{f} \vee n \vee k$
$\overline{c} \lor k$
$\overline{c} \vee \overline{k} \vee \overline{i} \vee I$

$$c \lor h \lor n \lor \overline{m}$$

$$c \lor l$$

$$d \lor \overline{k} \lor l$$

$$d \lor \overline{g} \lor l$$

$$\overline{g} \lor n \lor o$$

$$h \lor \overline{o} \lor \overline{j} \lor n$$

$$\overline{i} \lor j$$

$$\overline{d} \lor \overline{l} \lor \overline{m}$$

$$\overline{e} \lor m \lor \overline{n}$$

$$\overline{f} \lor h \lor i$$

$\overline{a} \vee \overline{\underline{f}} \vee \underline{g}$
$\overline{a} \lor b \lor h$
$a \lor c$
$a \vee \overline{i} \vee \overline{I}$
$a \vee \overline{k} \vee \overline{j}$
$b \lor d$
$b \vee g \vee \overline{n}$
$b \vee \overline{f} \vee n \vee k$
$\overline{c} \lor k$
$\overline{c} \vee \overline{k} \vee \overline{i} \vee I$

$$c \lor h \lor n \lor \overline{m}$$

$$c \lor l$$

$$d \lor \overline{k} \lor l$$

$$d \lor \overline{g} \lor l$$

$$\overline{g} \lor n \lor o$$

$$h \lor \overline{o} \lor \overline{j} \lor n$$

$$\overline{i} \lor j$$

$$\overline{d} \lor \overline{l} \lor \overline{m}$$

$$\overline{e} \lor m \lor \overline{n}$$

$$\overline{f} \lor h \lor i$$

$$\overline{a} \vee \overline{f} \vee \underline{g}$$

$$\overline{a} \vee \overline{b} \vee \overline{h}$$

$$a \vee c$$

$$a \vee \overline{i} \vee \overline{l}$$

$$a \vee \overline{k} \vee \overline{j}$$

$$b \vee d$$

$$b \vee \underline{g} \vee \overline{n}$$

$$b \vee \overline{f} \vee n \vee k$$

$$\overline{c} \vee k$$

$$\overline{c} \vee \overline{k} \vee \overline{i} \vee l$$

$$c \lor h \lor n \lor \overline{m}$$

$$c \lor l$$

$$d \lor \overline{k} \lor l$$

$$d \lor \overline{g} \lor l$$

$$\overline{g} \lor n \lor o$$

$$h \lor \overline{o} \lor \overline{j} \lor n$$

$$\overline{i} \lor j$$

$$\overline{d} \lor \overline{l} \lor \overline{m}$$

$$\overline{e} \lor m \lor \overline{n}$$

$$\overline{f} \lor h \lor i$$

$$\overline{a} \vee \overline{f} \vee \underline{g} \\
\overline{a} \vee \overline{b} \vee \overline{h}$$

$$a \vee \underline{c} \\
a \vee \overline{i} \vee \overline{l} \\
a \vee \overline{k} \vee \overline{j} \\
b \vee \underline{d} \\
b \vee \underline{g} \vee \overline{n} \\
b \vee \overline{f} \vee \underline{n} \vee \underline{k} \\
\overline{c} \vee \underline{k} \vee \overline{i} \vee \underline{l}$$

 $c \vee h \vee n \vee \overline{m}$

 $c \lor I$ $d \lor \overline{k} \lor I$

 $\overline{i} \vee i$

 $d \vee \overline{g} \vee I$

 $\overline{g} \lor n \lor o$ $h \lor \overline{o} \lor \overline{i} \lor n$

 $\overline{d} \vee \overline{l} \vee \overline{m}$

 $\overline{e} \vee m \vee \overline{n}$

 $\overline{f} \vee h \vee i$

$\overline{a} \vee \overline{f} \vee \underline{g}$ $\overline{a} \vee \overline{b} \vee \overline{h}$
$a \lor c$
$a \lor \overline{i} \lor \overline{l}$
$a \lor k \lor j$
$b \lor d$
$b \vee \underline{g} \vee \overline{n}$
$b \vee f \vee n \vee k$
$\overline{c} \lor \overline{k}$ $\overline{c} \lor \overline{k} \lor \overline{i} \lor I$
CVKVIVI

 $c \vee h \vee n \vee \overline{m}$ $c \vee I$ $d \vee \overline{k} \vee I$ $d \vee \overline{g} \vee I$ $\overline{g} \vee n \vee o$ $h \vee \overline{o} \vee \overline{j} \vee n$ $\overline{i} \vee j$ $\overline{d} \vee \overline{l} \vee \overline{m}$ $\overline{e} \vee m \vee \overline{n}$ $\overline{f} \vee h \vee i$


```
\overline{a} \vee \overline{f} \vee \underline{g}
\overline{a} \vee \overline{b} \vee \overline{h}
a \vee \underline{c}
a \vee \overline{i} \vee \overline{l}
a \vee \overline{k} \vee \overline{j}
b \vee d
b \vee \underline{g} \vee \overline{n}
b \vee \overline{f} \vee \underline{n} \vee \underline{k}
\overline{c} \vee \underline{k}
\overline{c} \vee \overline{k} \vee \overline{i} \vee \underline{l}
```

 $c \vee h \vee n \vee \overline{m}$ $c \vee I$ $d \vee \overline{k} \vee I$ $d \vee \overline{g} \vee I$ $\overline{g} \lor n \lor o$ $h \vee \overline{o} \vee \overline{j} \vee n$ $\overline{i} \vee j$ $\overline{d} \vee \overline{l} \vee \overline{m}$ $\overline{e} \vee m \vee \overline{n}$ $\overline{f} \vee h \vee i$

$$(h \vee \overline{o} \vee \overline{j} \vee n)$$

$$(h \vee \overline{o} \vee \overline{j} \vee n)$$

$$\begin{array}{l} \left(h \vee \overline{o} \vee \overline{j} \vee n\right) \\ \equiv \\ \left(\overline{h} \wedge o \wedge \overline{n}\right) \to \overline{j} \end{array}$$

$$\overline{a} \vee \overline{f} \vee \underline{g} \\
\overline{a} \vee \overline{b} \vee \overline{h} \\
a \vee \underline{c} \\
a \vee \overline{i} \vee \overline{l} \\
a \vee \overline{k} \vee \overline{j} \\
b \vee \underline{d} \\
b \vee \underline{g} \vee \overline{n} \\
b \vee \overline{f} \vee \underline{n} \vee \underline{k} \\
\overline{c} \vee \underline{k} \vee \overline{i} \vee \underline{l}$$

 $c \vee h \vee n \vee \overline{m}$ $c \vee I$ $d \vee \overline{k} \vee I$ $d \vee \overline{g} \vee I$ $\overline{g} \lor n \lor o$ $h \vee \overline{o} \vee \overline{i} \vee n$ $\bar{i} \vee i$ $\overline{d} \vee \overline{l} \vee \overline{m}$ $\overline{e} \vee m \vee \overline{n}$ $\overline{f} \vee h \vee i$

$$\overline{a} \vee \overline{f} \vee g$$

$$\overline{a} \vee \overline{b} \vee \overline{h}$$

$$a \vee c$$

$$a \vee \overline{i} \vee \overline{l}$$

$$a \vee \overline{k} \vee \overline{j}$$

$$b \vee d$$

$$b \vee g \vee \overline{n}$$

$$b \vee \overline{f} \vee n \vee k$$

$$\overline{c} \vee k$$

$$\overline{c} \vee \overline{k} \vee \overline{i} \vee l$$

$$c \lor h \lor n \lor \overline{m}$$

$$c \lor l$$

$$d \lor \overline{k} \lor l$$

$$d \lor \overline{g} \lor l$$

$$\overline{g} \lor n \lor o$$

$$h \lor \overline{o} \lor \overline{j} \lor n$$

$$\overline{i} \lor j$$

$$\overline{d} \lor \overline{l} \lor \overline{m}$$

$$\overline{e} \lor m \lor \overline{n}$$

$$\overline{f} \lor h \lor i$$

$$\overline{a} \vee \overline{f} \vee \underline{g}$$

$$\overline{a} \vee \overline{b} \vee \overline{h}$$

$$a \vee c$$

$$a \vee \overline{i} \vee \overline{l}$$

$$a \vee \overline{k} \vee \overline{j}$$

$$b \vee d$$

$$b \vee \underline{g} \vee \overline{n}$$

$$b \vee \overline{f} \vee n \vee k$$

$$\overline{c} \vee k$$

$$\overline{c} \vee \overline{k} \vee \overline{i} \vee l$$

$$\begin{array}{c} c \vee h \vee n \vee \overline{m} \\ c \vee l \\ d \vee \overline{k} \vee l \\ d \vee \overline{g} \vee l \\ \overline{g} \vee n \vee o \\ h \vee \overline{o} \vee \overline{j} \vee n \\ \overline{i} \vee j \\ \overline{d} \vee \overline{l} \vee \overline{m} \\ \overline{e} \vee m \vee \overline{n} \\ \overline{f} \vee h \vee i \\ \hline \overline{g} \vee h \vee \overline{j} \vee n \end{array}$$

$$\overline{a} \vee \overline{f} \vee g$$

$$\overline{a} \vee \overline{b} \vee \overline{h}$$

$$a \vee c$$

$$a \vee \overline{i} \vee \overline{l}$$

$$a \vee \overline{k} \vee \overline{j}$$

$$b \vee d$$

$$b \vee g \vee \overline{n}$$

$$b \vee \overline{f} \vee n \vee k$$

$$\overline{c} \vee k$$

$$\overline{c} \vee \overline{k} \vee \overline{i} \vee l$$

 $c \vee h \vee n \vee \overline{m}$ $c \vee I$ $d \vee \overline{k} \vee I$ $d \vee \overline{g} \vee I$ $\overline{g} \lor n \lor o$ $h \vee \overline{o} \vee \overline{i} \vee n$ $\bar{i} \vee j$ $\overline{d} \vee \overline{I} \vee \overline{m}$ $\overline{e} \vee m \vee \overline{n}$ $\overline{f} \lor h \lor i$ $\overline{g} \vee h \vee \overline{i} \vee n$

Adaptive heuristics

- Variable State Independent Decaying Sum (VSIDS)
 - ▶ Idea ([Chaff]) weight literals in learned conflicts
 - ► Decay: favor newer weights

Adaptive heuristics

- Variable State Independent Decaying Sum (VSIDS)
 - ▶ Idea ([Chaff]) weight literals in learned conflicts
 - ► Decay: favor newer weights
- Weighted degree heuristic
 - On a failure: weight the constraint propagated last

Adaptive heuristics

- Variable State Independent Decaying Sum (VSIDS)
 - ▶ Idea ([Chaff]) weight literals in learned conflicts
 - ► Decay: favor newer weights
- Weighted degree heuristic
 - On a failure: weight the constraint propagated last
- Activity Based Search
 - On a succes: weight the variables whose domain has changed

Outline

- 1 Introduction
- 2 Scheduling and SAT Encoding
 - Formulation into SAT
 - Scheduling by encoding into SAT
- 3 Scheduling and SAT Heuristics
- 4 Scheduling and SAT Hybrids
- Conclusion

CNF encoding

- The way we encode problems into SAT has a huge impact on efficiency
 - ► Encoding of Planning problems
 - Encoding of CSP (Direct, Log, AC-encoding)
 - ► Encoding of Pseudo-Boolean (Adder, Sorter)

CNF encoding

- The way we encode problems into SAT has a huge impact on efficiency
 - ► Encoding of Planning problems
 - Encoding of CSP (Direct, Log, AC-encoding)
 - Encoding of Pseudo-Boolean (Adder, Sorter)
- All encodings are based on CSP formulations
 - ► Some Boolean variables (e.g., relative orders of tasks)
 - Start time variables (Integer variables)

CNF encoding

- The way we encode problems into SAT has a huge impact on efficiency
 - ► Encoding of Planning problems
 - Encoding of CSP (Direct, Log, AC-encoding)
 - Encoding of Pseudo-Boolean (Adder, Sorter)
- All encodings are based on CSP formulations
 - ► Some Boolean variables (e.g., relative orders of tasks)
 - Start time variables (Integer variables)
- Integer variables and precedence constraints

Direct Encoding

Domain

• An atom i_v for each pair $(x_i, v \in D(x_i))$

```
x_i = 1: 1000

x_i = 2: 0100

x_i = 3: 0010

x_i = 4: 0001
```

- Must take at least a value: $i_1 \lor i_2 \lor ... \lor i_n$
- Must take at most one value: $\bigwedge_{v \neq w \in D(x_i)} \overline{i_v} \vee \overline{i_w}$

Direct Encoding

Domain

• An atom i_v for each pair $(x_i, v \in D(x_i))$

```
x_i = 1: 1000

x_i = 2: 0100

x_i = 3: 0010

x_i = 4: 0001
```

- Must take at least a value: $i_1 \lor i_2 \lor ... \lor i_n$
- Must take at most one value: $\bigwedge_{v \neq w \in D(x_i)} \overline{i_v} \vee \overline{i_w}$

Complexity

- $O(n^2)$ space: n(n-1)/2 binary clauses and one *n*-ary clause.
- There are different ways to encode the constraints.

Constraints: Tuple Encoding

Example of constraint: $x_i < x_j$						
	x_i x_j	1	2	3	4	
-	1	$\overline{i_1} \vee \overline{j_1}$	$\overline{i_2} \vee \overline{j_1}$	$\overline{i_3} \vee \overline{j_1}$	$\overline{i_4} \vee \overline{j_1}$	
	2		$\overline{i_2} \vee \overline{j_2}$	$\frac{1}{i_3} \vee \frac{1}{j_2}$		
	3			$\overline{i_3} \vee \overline{j_3}$	$\overline{i_4} \vee \overline{j_3}$	
	4				$\overline{i_4} \vee \overline{j_3}$	

Constraints: Tuple Encoding

Example of constraint: $x_i < x_j$

Costly (in space) and weak (in propagation)

- $O(n^2)$ binary clauses.
- $\overline{i_4}(x_i \neq 4)$ and $\overline{j_1}(x_i \neq 1)$ are inconsistent, but not unit propagated.

Constraints: AC Encoding [Kasif 90]

Example of constraint: $x_i < x_j$							
9	atom -	supp					
$x_i = 1$ $x_i = 2$		$\forall j_2 \lor j_3 \lor j_$					
$x_i = 3$ $x_i = 4$	$\frac{\overline{i_3}}{\overline{i_4}}$	∨ <i>j</i> ₄ ∨ ⊥					

Constraints: AC Encoding [Kasif 90]

Example of constraint:
$$x_i < x_j$$

assignment	atom		support
$x_i = 1$	$\overline{i_1}$	\vee	$j_2 \vee j_3 \vee j_4$
$x_i = 2$	$\overline{i_2}$	\vee	$j_3 \vee j_4$
$x_{i} = 3$	$\overline{i_3}$	\vee	<i>j</i> 4
$x_{i} = 4$	$\overline{i_4}$	\vee	\perp

Same space complexity, better propagation

- O(n) n-ary clauses
- $\overline{i_4}(x_i \neq 4)$ and $\overline{j_1}(x_j \neq 1)$ are unit clauses.

Order Encoding [Crawford & Backer 94]

Domain

• An atom i_v for each pair $(x_i, v \in D(x_i))$

```
x_i = 1: 1111

x_i = 2: 0111

x_i = 3: 0011

x_i = 4: 0001
```

- Bound propagation:
 - If $x_i \le v$ then $x_i \le v + 1$

Order Encoding [Crawford & Backer 94]

Domain

• An atom i_v for each pair $(x_i, v \in D(x_i))$

$$i_{v} \Leftrightarrow x_{i} \leq v$$
 $x_{i} = 1:$
 $x_{i} = 2:$
 0111
 $x_{i} = 3:$
 0011
 $x_{i} = 4:$
 0001

- Bound propagation:
 - If $x_i \le v$ then $x_i \le v+1$
 - $\bigwedge_{v \in D(x_i)} \overline{i_v} \vee i_{v+1}$

Complexity

• O(n) space (n-1) binary clauses)

Constraints: BC Encoding

Example of constraint: $x_i < x_j$

relation	clause
$x_i > 0 \Rightarrow x_j > 1$	$\perp \vee \overline{j_1}$
$x_i > 1 \Rightarrow x_j > 2$	$i_1 \vee \overline{j_2}$
$x_i > 2 \Rightarrow x_j > 3$	$i_2 \vee \overline{j_3}$
$x_i > 3 \Rightarrow x_j > 4$	i₃∨ ⊥

Constraints: BC Encoding

Example of constraint:
$$x_i < x_j$$

$$\begin{array}{c|c} \text{relation} & \text{clause} \\ x_i > 0 \Rightarrow x_j > 1 & \bot \vee \overline{j_1} \\ x_i > 1 \Rightarrow x_j > 2 & i_1 \vee \overline{j_2} \\ x_i > 2 \Rightarrow x_j > 3 & i_2 \vee \overline{j_3} \\ x_i > 3 \Rightarrow x_j > 4 & i_3 \vee \bot \\ \end{array}$$

Better complexity and same propagation on some linear constraints

- O(n) space (n binary clauses)
- $i_3(x_i \leq 3)$ and $\overline{j_1}(x_j > 1)$ are unit clauses.

Log Encoding [Walsh 00]

Domain

• An atom i_k for each value in $[1, ..., \lfloor \log_2 ub \rfloor]$ (assuming $D(x_1 = [0, ..., ub])$

$$\sum_{k=1}^{ub} 2^k * i_k = v \Leftrightarrow x_i = v$$
 $x_i = 0$: 00
 $x_i = 1$: 01
 $x_i = 2$: 10
 $x_i = 3$: 11

• For interval domains, no need for extra clauses

Log Encoding [Walsh 00]

Domain

• An atom i_k for each value in $[1, ..., \lfloor \log_2 ub \rfloor]$ (assuming $D(x_1 = [0, ..., ub])$

$$\sum_{k=1}^{ub} 2^k * i_k = v \Leftrightarrow x_i = v$$

$$x_i = 0: 00$$

$$x_i = 1: 01$$

$$x_i = 2: 10$$

$$x_i = 3: 11$$

• For interval domains, no need for extra clauses

Complexity

• $O(\log_2 n)$ space

Propagation

• Encoding constraints is trickier, and less powerful

Other Encodings

Many more!

- Mix of direct and order encoding [lazy-FD, Numberjack]
- Mix of AC and log encoding [Gavanelli 2007]
- Mix of order and log encoding [Sugar, Tamura et al. 2006]

Other Encodings

Many more!

- Mix of direct and order encoding [lazy-FD, Numberjack]
- Mix of AC and log encoding [Gavanelli 2007]
- Mix of order and log encoding [Sugar, Tamura et al. 2006]
 - ▶ Log encoding in a base B and order encoding inside a digit
 - Excellent results on scheduling benchmarks! (with CDCL solvers)

Progress of SAT solvers

• From a few hundreds variables in the 90's to millions now

Progress of SAT solvers

• From a few hundreds variables in the 90's to millions now

[Crawford & Backer 94]

- Instances from Sadeh, with 10 jobs, 5 operations each (45m cutoff)
- Tableau solved 90% of the instances (about 2 min when it did)

Progress of SAT solvers

• From a few hundreds variables in the 90's to millions now

[Crawford & Backer 94]

- Instances from Sadeh, with 10 jobs, 5 operations each (45m cutoff)
- Tableau solved 90% of the instances (about 2 min when it did)

[Tamura, Tanjo & Banbara]

- Same instances used during the CSP Solver Competition
- Similar model, hardware of course incomparable, MiniSat

Progress of SAT solvers

• From a few hundreds variables in the 90's to millions now

[Crawford & Backer 94]

- Instances from Sadeh, with 10 jobs, 5 operations each (45m cutoff)
- Tableau solved 90% of the instances (about 2 min when it did)

[Tamura, Tanjo & Banbara]

- Same instances used during the CSP Solver Competition
- Similar model, hardware of course incomparable, MiniSat
- The hardest instance requires a few 100s conflicts at the most

Closing the Open Shop

Instances

- [Gueret & Prins]: hard for local search, extremely easy for SAT/CP
- [Taillard]: Large, but relatively easy
- [Brucker]: Three open instances

Closing the Open Shop

Instances

- [Gueret & Prins]: hard for local search, extremely easy for SAT/CP
- [Taillard]: Large, but relatively easy
- [Brucker]: Three open instances

results

- All instances solved and proved optimal
 - The two hardest instances were decomposed into 120 subproblems, and required up to 13h to solve

Closing the Open Shop

Instances

- [Gueret & Prins]: hard for local search, extremely easy for SAT/CP
- [Taillard]: Large, but relatively easy
- [Brucker]: Three open instances

results

- All instances solved and proved optimal
 - The two hardest instances were decomposed into 120 subproblems, and required up to 13h to solve
- First approach to close the open shop!

• [Tamura et al.]'s encoding is better than order encoding

- [Tamura et al.]'s encoding is better than order encoding
 - ► However, the huge difference with respect to [Crawford & Backer 94] is due to the solver

- [Tamura et al.]'s encoding is better than order encoding
 - ► However, the huge difference with respect to [Crawford & Backer 94] is due to the solver
- It is now possible to efficiently solve some scheduling problem simply by formulating it as a CNF formula

Outline

- Introduction
- 2 Scheduling and SAT Encoding
- 3 Scheduling and SAT Heuristics
 - A SAT-like Approach
 - Comparison with the State of the Art
- Scheduling and SAT Hybrids
- Conclusion

• CSP Solver Competition: scheduling benchmarks

- CSP Solver Competition: scheduling benchmarks
 - Some hard instances
 - Generic format (XCSP), the notions of resource is lost, no global constraint

- CSP Solver Competition: scheduling benchmarks
 - Some hard instances
 - Generic format (XCSP), the notions of resource is lost, no global constraint
 - ► Yet many solvers solved them ([Sugar], [Choco], [Mistral])

- CSP Solver Competition: scheduling benchmarks
 - Some hard instances
 - Generic format (XCSP), the notions of resource is lost, no global constraint
 - ► Yet many solvers solved them ([Sugar], [Choco], [Mistral])
- Experiment with Weighted degree [Boussemart et al. 04]

- CSP Solver Competition: scheduling benchmarks
 - Some hard instances
 - Generic format (XCSP), the notions of resource is lost, no global constraint
 - ► Yet many solvers solved them ([Sugar], [Choco], [Mistral])
- Experiment with Weighted degree [Boussemart et al. 04]
 - ► Similar simple model in [Mistral], same observation [Grimes]

- CSP Solver Competition: scheduling benchmarks
 - Some hard instances
 - Generic format (XCSP), the notions of resource is lost, no global constraint
 - ► Yet many solvers solved them ([Sugar], [Choco], [Mistral])
- Experiment with Weighted degree [Boussemart et al. 04]
 - ► Similar simple model in [Mistral], same observation [Grimes]
 - Open shop instances closed by [Tamura et al.] can be solved to optimality in a few minutes

- CSP Solver Competition: scheduling benchmarks
 - Some hard instances
 - Generic format (XCSP), the notions of resource is lost, no global constraint
 - ► Yet many solvers solved them ([Sugar], [Choco], [Mistral])
- Experiment with Weighted degree [Boussemart et al. 04]
 - ► Similar simple model in [Mistral], same observation [Grimes]
 - Open shop instances closed by [Tamura et al.] can be solved to optimality in a few minutes
- Are <u>adaptive heuristics</u> all that we need to solve disjunctive scheduling problems?

Constraint Model

Model

- A Variable for the start time of each task: $t_i \in [0, ..., C_{max}]$.
 - ▶ Precedence constraints: $t_i + p_i \le t_{i+1}$.

Constraint Model

Model

- A Variable for the start time of each task: $t_i \in [0, ..., C_{max}]$.
 - Precedence constraints: $t_i + p_i \le t_{i+1}$.
- A Boolean Variable standing for the relative order of each pair of conflicting tasks (disjunct):
 - Binary Disjunctive constraints: $b_{ij} = \begin{cases} 0 \Leftrightarrow t_i + p_i \leq t_j \\ 1 \Leftrightarrow t_j + p_j \leq t_i \end{cases}$

Adaptive heuristic

- Branch on Boolean variables only (order tasks on machines)
- Minimum domain over weighted degree [Boussemart et al. 04]

Adaptive heuristic

- Branch on Boolean variables only (order tasks on machines)
- Minimum domain over weighted degree [Boussemart et al. 04]

Guided search

- Follow the branch corresponding to the best solution [Beck 07]
- \simeq phase-saving heuristic in SAT [Pipatsrisawat & Darwiche 07]

Adaptive heuristic

- Branch on Boolean variables only (order tasks on machines)
- Minimum domain over weighted degree [Boussemart et al. 04]

Guided search

- Follow the branch corresponding to the best solution [Beck 07]
- • ≃ phase-saving heuristic in SAT [Pipatsrisawat & Darwiche 07]

Restarts

• Geometric [Walsh 99], nogoods on restarts [Lecoutre et al. 07]

Adaptive heuristic

- Branch on Boolean variables only (order tasks on machines)
- Minimum domain over weighted degree [Boussemart et al. 04]

Guided search

- Follow the branch corresponding to the best solution [Beck 07]
- • ≃ phase-saving heuristic in SAT [Pipatsrisawat & Darwiche 07]

Restarts

- Geometric [Walsh 99], nogoods on restarts [Lecoutre et al. 07]
- Almost no problem specific method

CP or SAT?

- Many similarities with SAT:
 - ► Search variables are Boolean
 - Propagation is very basic
 - ► SAT-based search strategies

CP or SAT?

- Many similarities with SAT:
 - ► Search variables are Boolean
 - Propagation is very basic
 - SAT-based search strategies

Some differences

• Faster propagation, but no clause learning

CP or SAT?

- Many similarities with SAT:
 - ► Search variables are Boolean
 - Propagation is very basic
 - ► SAT-based search strategies

Some differences

- Faster propagation, but no clause learning
- Restarts + weighted degree "simulates" CDCL behavior?

- Sequence-dependent setup times
 - ▶ Transition between tasks on a machine

- Sequence-dependent setup times
 - ▶ Transition between tasks on a machine
 - ► Add the transition times in the disjunct

- Sequence-dependent setup times
 - ► Transition between tasks on a machine
 - ► Add the transition times in the disjunct
- Maximum time lags
 - Maximum duration between consecutive tasks in a job

- Sequence-dependent setup times
 - ▶ Transition between tasks on a machine
 - ► Add the transition times in the disjunct
- Maximum time lags
 - Maximum duration between consecutive tasks in a job
 - Precedences with negative durations

- Sequence-dependent setup times
 - ► Transition between tasks on a machine
 - ► Add the transition times in the disjunct
- Maximum time lags
 - Maximum duration between consecutive tasks in a job
 - ► Precedences with negative durations
- Just in Time scheduling
 - Penalties for earliness and tardiness of each job

- Sequence-dependent setup times
 - ► Transition between tasks on a machine
 - ► Add the transition times in the disjunct
- Maximum time lags
 - Maximum duration between consecutive tasks in a job
 - ► Precedences with negative durations
- Just in Time scheduling
 - Penalties for earliness and tardiness of each job
 - Simple decomposition to express the new objective

- This simple model was run on several standard benchmarks
 - ▶ 1 hour cutoff
 - ▶ 10 random runs, we take the best
- Best known results on each benchmark (LS, CP, MIP)
 - ► The cutoff may be different
 - ► The hardware is different

- This simple model was run on several standard benchmarks
 - ▶ 1 hour cutoff
 - ▶ 10 random runs, we take the best
- Best known results on each benchmark (LS, CP, MIP)
 - ► The cutoff may be different
 - ► The hardware is different
- ullet Average % deviation (with respect to a method ${f M}$ in $\{\mathit{MIP},\mathit{CP},\mathit{LS}\}$)

▶

$$100 \times \sum_{\text{instance } x} \frac{\textit{M objective}(x) - \textit{SAT objective}(x)}{\#\textit{instances} \times \textit{best objective}(x)}$$

- This simple model was run on several standard benchmarks
 - ▶ 1 hour cutoff
 - ▶ 10 random runs, we take the best
- Best known results on each benchmark (LS, CP, MIP)
 - ► The cutoff may be different
 - ▶ The hardware is different
- Average % deviation (with respect to a method M in $\{MIP, CP, LS\}$)

▶

$$100 \times \sum_{\mathrm{instance}~x} \frac{\textit{M objective}(x) - \textit{SAT objective}(x)}{\#\textit{instances}~\times~\textit{best objective}(x)}$$

Negative: how much worse than M (when it is)

- This simple model was run on several standard benchmarks
 - ▶ 1 hour cutoff
 - ▶ 10 random runs, we take the best
- Best known results on each benchmark (LS, CP, MIP)
 - ► The cutoff may be different
 - ► The hardware is different
- Average % deviation (with respect to a method M in $\{MIP, CP, LS\}$)

•

$$100 \times \sum_{\mathrm{instance}~x} \frac{\textit{M objective}(x) - \textit{SAT objective}(x)}{\#\textit{instances}~\times~\textit{best objective}(x)}$$

- ► Negative: how much worse than M (when it is)
- ► Positive: how much better than M (when it is)

Jobshop - C_{max} - **Taillard**

Jobshop with setup times - C_{max} - Brucker & Thiele

Jobshop with time lags - C_{max} - Lawrence (modified)

"No-wait" Jobshop - C_{max} - Lawrence

Jobshop - earliness/tardiness - Beck & Refalo; Morton & Pentico

• Often comparable or better than the state of the art

- Often comparable or better than the state of the art
 - ▶ On benchmarks that are more favorable?

- Often comparable or better than the state of the art
 - ▶ On benchmarks that are more favorable?
 - ▶ On benchmarks that received less attention?

- Often comparable or better than the state of the art
 - ▶ On benchmarks that are more favorable?
 - ▶ On benchmarks that received less attention?
- Adaptive heuristics are extremely powerful

- Often comparable or better than the state of the art
 - ▶ On benchmarks that are more favorable?
 - On benchmarks that received less attention?
- Adaptive heuristics are extremely powerful
 - Effective at detecting bottlenecks

- Often comparable or better than the state of the art
 - ▶ On benchmarks that are more favorable?
 - On benchmarks that received less attention?
- Adaptive heuristics are extremely powerful
 - Effective at detecting bottlenecks
 - Often better than dedicated CP approaches to prove optimality

- Often comparable or better than the state of the art
 - ▶ On benchmarks that are more favorable?
 - On benchmarks that received less attention?
- Adaptive heuristics are extremely powerful
 - Effective at detecting bottlenecks
 - Often better than dedicated CP approaches to prove optimality
 - ★ Even this "pseudo" learning helps!

Outline

- Introduction
- 2 Scheduling and SAT Encoding
- 3 Scheduling and SAT Heuristics
- Scheduling and SAT Hybrids
 - Lazy clause generation
 - Satisfiability Modulo Theories
- Conclusion

• Pure reformulation is surprisingly efficient

- Pure reformulation is surprisingly efficient
- However, simply using an adaptive heuristic and restart seems at least as good

- Pure reformulation is surprisingly efficient
- However, simply using an adaptive heuristic and restart seems at least as good

- Pure reformulation is surprisingly efficient
- However, simply using an adaptive heuristic and restart seems at least as good

Hybridization

• SAT-based learning AND CP-based propagation

- Pure reformulation is surprisingly efficient
- However, simply using an adaptive heuristic and restart seems at least as good

- SAT-based learning AND CP-based propagation
 - ▶ What is the best tradeoff?

- Pure reformulation is surprisingly efficient
- However, simply using an adaptive heuristic and restart seems at least as good

- SAT-based learning AND CP-based propagation
 - What is the best tradeoff?
 - Does there need to be a tradeoff?

- Pure reformulation is surprisingly efficient
- However, simply using an adaptive heuristic and restart seems at least as good

- SAT-based learning AND CP-based propagation
 - What is the best tradeoff?
 - Does there need to be a tradeoff?
- Lazy Clause Generation
- SAT Modulo Theories

Lazy Clause Generation [Ohrimenko, Stuckey & Codish 07] - [Feydy & Stuckey 09]

Architecture

- Channel a CP and SAT representations
 - Search and propagation in CP
 - Efficient domain representation and propagators

Lazy Clause Generation [Ohrimenko, Stuckey & Codish 07] - [Feydy & Stuckey 09]

Architecture

- Channel a CP and SAT representations
 - Search and propagation in CP
 - Efficient domain representation and propagators
 - * Produce clauses to explain the pruning
 - Just enough to extract a conflict

Lazy Clause Generation [Ohrimenko, Stuckey & Codish 07] - [Feydy & Stuckey 09]

Architecture

- Channel a CP and SAT representations
 - Search and propagation in CP
 - ► Efficient domain representation and propagators
 - * Produce clauses to explain the pruning
 - Just enough to extract a conflict
 - ► The SAT formulation is generated lazily (learned during search)

$x_i < x_j$

• Initial representation

	CP view	SAT view
$D(x_i)$	$\{1,\ldots,4\}$	$\overline{i_1} \vee i_2, \overline{i_2} \vee i_3$
$D(x_j)$	$\{2,\ldots,5\}$	$\overline{j_2} \vee j_3, \overline{j_3} \vee j_4$
constraint	$x_i < x_j$	
constraint	$C(x_i, x_k, \ldots)$	

$$x_i < x_j$$

• Some constraint reduces the domain of x_i to $\{2, ..., 5\}$

	CP view	SAT view
$D(x_i)$	$\{2,\ldots,4\}$	$\overline{i_1} \lor i_2, \overline{i_2} \lor i_3$
$D(x_j)$	$\{2,\ldots,5\}$	$ \overline{j_2} \vee j_3, \overline{j_3} \vee j_4 $
constraint	$x_i < x_j$	
constraint	$C(x_i, x_k, \ldots)$	

$x_i < x_j$

• An explanation clause $T \vee \overline{i_1}$ is produced, and the unit literal $\overline{i_1}$ is propagated

	CP view	SAT view
$\overline{D(x_i)}$	$\{2,\ldots,4\}$	$\overline{i_1} \vee i_2, \overline{i_2} \vee i_3$
$D(x_j)$	$\{2,\ldots,5\}$	$ \overline{j_2} \vee j_3, \overline{j_3} \vee j_4 $
constraint	$x_i < x_j$	
constraint	$C(x_i, x_k, \ldots)$	$T \vee \overline{i_1}$

$x_i < x_j$

ullet The propagator for $x_i < x_j$ is triggered and reduces the domain of x_j

	CP view	SAT view
$\overline{D(x_i)}$	$\{2,\ldots,4\}$	$\overline{i_1} \vee i_2, \overline{i_2} \vee i_3$
$D(x_j)$	$\{3,\ldots,5\}$	$ \overline{j_2} \vee j_3, \overline{j_3} \vee j_4 $
constraint	$x_i < x_j$	
constraint	$C(x_i, x_k, \ldots)$	$T \vee \overline{i_1}$

$$x_i < x_j$$

• An explanation clause is also produced

	CP view	SAT view
$\overline{D(x_i)}$	$\{2,\ldots,4\}$	$\overline{i_1} \vee i_2, \overline{i_2} \vee i_3$
$D(x_j)$	$\{3,\ldots,5\}$	$ \overline{j_2} \vee j_3, \overline{j_3} \vee j_4 $
constraint	$x_i < x_j$	$i_i \vee \overline{j_2}$
constraint	$C(x_i, x_k, \ldots)$	$T \vee \overline{i_1}$

Resource Constrained Project Scheduling Problem (RCPSP)

• Cumulative resources, each task has a demand r_k for the resource k

Resource Constrained Project Scheduling Problem (RCPSP)

• Cumulative resources, each task has a demand r_k for the resource k

Model

- Formulated using sums on the order encoding
- A fixed number of runs with a dedicated heuristic, then VSIDS (adaptive heuristic)

Resource Constrained Project Scheduling Problem (RCPSP)

• Cumulative resources, each task has a demand r_k for the resource k

Model

- Formulated using sums on the order encoding
- A fixed number of runs with a dedicated heuristic, then VSIDS (adaptive heuristic)

Results

- Favorable comparison with state of the art approaches
 - MCS (implemented on top of Ilog-Scheduler [Laborie 05])
 - ► CP approach by [Liess & Michelon 08]
 - MIP approach by [Koné et al.]

Resource Constrained Project Scheduling Problem (RCPSP)

• Cumulative resources, each task has a demand r_k for the resource k

Model

- Formulated using sums on the order encoding
- A fixed number of runs with a dedicated heuristic, then VSIDS (adaptive heuristic)

Results

- Favorable comparison with state of the art approaches
 - MCS (implemented on top of Ilog-Scheduler [Laborie 05])
 - ► CP approach by [Liess & Michelon 08]
 - ▶ MIP approach by [Koné et al.]
- 54 open instances closed!

SAT Modulo Theories (SMT)

- Framework to hybridize dedicated solvers (Theories, or T-Solvers)
 with CDCL solvers
 - ► T-Solver view: a set of propositions each represented by a literal in F
 - ► CDCL-Solver view: a CNF formula *F* partially representing the problem
- CDCL-Solver makes decisions and analyzes the conflicts
- T-Solver detects conflicts and/or propagates and generates explanation clauses

Several Theories

T-Solvers

- Linear Real Arithmetic,
- Arrays,
- Bit-Vectors,
- Equality with Uninterpreted Functions,

Several Theories

T-Solvers

- Linear Real Arithmetic,
- Arrays,
- Bit-Vectors,
- Equality with Uninterpreted Functions,
- Difference Logic (i.e. formulas contain atoms of the form $x y \le k$).

Several Theories

T-Solvers

- Linear Real Arithmetic,
- Arrays,
- Bit-Vectors,
- Equality with Uninterpreted Functions,
- Difference Logic (i.e. formulas contain atoms of the form $x y \le k$).

SMT for scheduling

Satisfiability Modulo Difference Logic.

T-Solver view

$$\begin{array}{lll} s_1 - s_2 \leq -2 & z - a \leq 15 \\ s_3 - s_4 \leq -4 & \\ s_5 - s_6 \leq -5 & \\ s_2 - z \leq -5 & l_{1 \prec 5} \Leftrightarrow s_1 - s_5 \leq -2 \\ s_4 - z \leq -4 & l_{5 \prec 1} \Leftrightarrow s_5 - s_1 \leq -5 \\ s_6 - z \leq -3 & l_{2 \prec 4} \Leftrightarrow s_2 - s_4 \leq -5 \\ a - s_1 \leq 0 & l_{4 \prec 2} \Leftrightarrow s_4 - s_2 \leq -4 \\ a - s_3 \leq 0 & l_{3 \prec 6} \Leftrightarrow s_3 - s_6 \leq -6 \\ a - s_5 \leq 0 & l_{6 \prec 3} \Leftrightarrow s_6 - s_3 < -3 \end{array}$$

T-Solver view

$$\begin{array}{lll} s_1 - s_2 \leq -2 & z - a \leq 15 \\ s_3 - s_4 \leq -4 & \\ s_5 - s_6 \leq -5 & \\ s_2 - z \leq -5 & l_{1 \prec 5} \Leftrightarrow s_1 - s_5 \leq -2 \\ s_4 - z \leq -4 & l_{5 \prec 1} \Leftrightarrow s_5 - s_1 \leq -5 \\ s_6 - z \leq -3 & l_{2 \prec 4} \Leftrightarrow s_2 - s_4 \leq -5 \\ a - s_1 \leq 0 & l_{4 \prec 2} \Leftrightarrow s_4 - s_2 \leq -4 \\ a - s_3 \leq 0 & l_{3 \prec 6} \Leftrightarrow s_3 - s_6 \leq -6 \\ a - s_5 \leq 0 & l_{6 \prec 3} \Leftrightarrow s_6 - s_3 < -3 \end{array}$$

CDCL-Solver view

$$I_{1 \prec 5} \lor I_{5 \prec 1}$$
 $I_{2 \prec 4} \lor I_{4 \prec 2}$
 $I_{3 \prec 6} \lor I_{6 \prec 3}$

$$\begin{aligned} I_{1 \prec 5} &\Leftrightarrow s_1 - s_5 \leq -2 \\ I_{5 \prec 1} &\Leftrightarrow s_5 - s_1 \leq -5 \\ I_{2 \prec 4} &\Leftrightarrow s_2 - s_4 \leq -5 \\ I_{4 \prec 2} &\Leftrightarrow s_4 - s_2 \leq -4 \\ I_{3 \prec 6} &\Leftrightarrow s_3 - s_6 \leq -6 \\ I_{6 \prec 3} &\Leftrightarrow s_6 - s_3 \leq -3 \end{aligned}$$

$$\begin{aligned} I_{1 \prec 5} &\Leftrightarrow s_1 - s_5 \leq -2 \\ I_{5 \prec 1} &\Leftrightarrow s_5 - s_1 \leq -5 \\ I_{2 \prec 4} &\Leftrightarrow s_2 - s_4 \leq -5 \\ I_{4 \prec 2} &\Leftrightarrow s_4 - s_2 \leq -4 \\ I_{3 \prec 6} &\Leftrightarrow s_3 - s_6 \leq -6 \\ I_{6 \prec 3} &\Leftrightarrow s_6 - s_3 \leq -3 \end{aligned}$$

• Reasoning: detection of negative cycles ([Bellman-Ford])

Learned clause

$$\bullet \ \overline{I_{5\prec 1}} \lor \overline{I_{2\prec 4}}$$

Two fomulations

- Time encoding
- Task encoding

Two fomulations

- Time encoding
- Task encoding

Results

More robust than lazy-FD

Two fomulations

- Time encoding
- Task encoding

Results

- More robust than lazy-FD
- State of the art for RCPSP!

Outline

- Introduction
- 2 Scheduling and SAT Encoding
- 3 Scheduling and SAT Heuristics
- Scheduling and SAT Hybrids
- Conclusion

• Scheduling with SAT is not as bad as it sounds

- Scheduling with SAT is not as bad as it sounds
- Generic algorithms can sometimes be difficult to match
 - Adaptive heuristics
 - Clause learning

- Scheduling with SAT is not as bad as it sounds
- Generic algorithms can sometimes be difficult to match
 - Adaptive heuristics
 - Clause learning
- Nogood learning [Schiex & Verfaillie 93] and explanation for global constraints [Rochart & Jussien 03], disjunctive resource [Vilím 05]?
 - Somehow it does not have the same impact as in SAT

- Scheduling with SAT is not as bad as it sounds
- Generic algorithms can sometimes be difficult to match
 - ► Adaptive heuristics
 - Clause learning
- Nogood learning [Schiex & Verfaillie 93] and explanation for global constraints [Rochart & Jussien 03], disjunctive resource [Vilím 05]?
 - ▶ Somehow it does not have the same impact as in SAT
- Hybridization (learning + dedicated reasoning) is the way to go
 - SAT Modulo Theories?
 - CDCL with global constraints and integer domains?
 - Explanation algorithms for global constraints?