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Scheduling with Boolean Satisfiability

Important theoretical results
I [Cook-Levin] theorem: “First” NP-complete problem
I [Schaefer]’s dichotomy theorem

Efficient algorithms (CDCL)

Successful in Circuit design, Model checking, Planning, ...

Association of scheduling and SAT not as natural as MIP or CP

Somewhat counter-intuitive (Boolean vs. Range, logical operator)
I Apparent issue, the numerical aspect can often be avoided

Efficiency? SAT Solvers have not always been good
I They have made huge progress in the past 10 years

All the approaches discussed here were developed in the last 5 years

Recent progress in SAT algorithms opens new research opportunities
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Scheduling Problems

Terminology

Tasks (preemptive, non-preemptive)

Resources (disjunctive, cumulative, reservoir,...)

Objectives (makespan, tardiness, flow time,...)

Side constraints (precedence, time windows, time lags,...)

Tip of the iceberg

SAT-based methods have been applied to a very small subset
scheduling problems.

I Minimization of makespan for non-preemptive tasks and disjunctive
resources
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Boolean Satisfiability (SAT)

Problem

Boolean variables (atoms)

Propositional logic formula (often CNF)

Literals: a, a

Clauses: (a ∨ f ∨ g), (a ∨ f ∨ g), (a ∨ b), (b ∨ c ∨ g)

Solution: assignment of atoms satisfying all clauses

Algorithms

Stochastic local search (GSAT, WalkSat,...)

Survey propagation

DPLL: Tree search + Unit propagation

CDCL: Conflict Driven Clause learning
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Conflict Driven Clause Leaning (CDCL)

“Evolved” from DPLL

Turning point: clause learning ([GRASP] then [Chaff])
I First SAT-Solver competition in 2002

Dive in the “search tree” (make decisions)
I Unit propagate: if a must be true, then a cannot satisfy a clause
I a ∨ b ∨ c effectively becomes b ∨ c

F continue until a fix point is reached

Until reaching a conflicts (dead-end)
I Extract a learned clause
I Backjump several levels and unit-propagate the learned clause

Adaptive branching heuristics (weight conflicting literals)

And also: restart, simplify the clause base, forget clauses, etc.
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CDCL: Example

f
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c k l
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f ∨ h ∨ i
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Adaptive heuristics

Variable State Independent Decaying Sum (VSIDS)
I Idea ([Chaff]) weight literals in learned conflicts
I Decay: favor newer weights

Weighted degree heuristic
I On a failure: weight the constraint propagated last

Activity Based Search
I On a succes: weight the variables whose domain has changed
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2 Scheduling and SAT Encoding
Formulation into SAT
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CNF encoding

The way we encode problems into SAT has a huge impact on
efficiency

I Encoding of Planning problems
I Encoding of CSP (Direct, Log, AC-encoding)
I Encoding of Pseudo-Boolean (Adder, Sorter)

All encodings are based on CSP formulations
I Some Boolean variables (e.g., relative orders of tasks)
I Start time variables (Integer variables)

Integer variables and precedence constraints
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Direct Encoding

Domain

An atom iv for each pair (xi , v ∈ D(xi ))

I iv ⇔ xi = v

xi = 1: 1000
xi = 2: 0100
xi = 3: 0010
xi = 4: 0001

Must take at least a value: i1 ∨ i2 ∨ . . . ∨ in

Must take at most one value:
∧

v 6=w∈D(xi )
iv ∨ iw

Complexity

O(n2) space: n(n − 1)/2 binary clauses and one n-ary clause.

There are different ways to encode the constraints.
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Constraints: Tuple Encoding

Example of constraint: xi < xj

xi 1 2 3 4
xj
1 i1 ∨ j1 i2 ∨ j1 i3 ∨ j1 i4 ∨ j1
2 i2 ∨ j2 i3 ∨ j2 i4 ∨ j2
3 i3 ∨ j3 i4 ∨ j3
4 i4 ∨ j3

Costly (in space) and weak (in propagation)

O(n2) binary clauses.

i4(xi 6= 4) and j1(xj 6= 1) are inconsistent, but not unit propagated.
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Constraints: AC Encoding [Kasif 90]

Example of constraint: xi < xj

assignment atom support
xi = 1 i1 ∨ j2 ∨ j3 ∨ j4
xi = 2 i2 ∨ j3 ∨ j4
xi = 3 i3 ∨ j4
xi = 4 i4 ∨ ⊥

Same space complexity, better propagation

O(n) n-ary clauses

i4(xi 6= 4) and j1(xj 6= 1) are unit clauses.
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Order Encoding [Crawford & Backer 94]

Domain

An atom iv for each pair (xi , v ∈ D(xi ))

I iv ⇔ xi ≤ v

xi = 1: 1111
xi = 2: 0111
xi = 3: 0011
xi = 4: 0001

Bound propagation:
I If xi ≤ v then xi ≤ v + 1
I
∧

v∈D(xi )
iv ∨ iv+1

Complexity

O(n) space (n − 1 binary clauses)
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Constraints: BC Encoding

Example of constraint: xi < xj

relation clause
xi > 0⇒ xj > 1 ⊥ ∨j1
xi > 1⇒ xj > 2 i1 ∨ j2
xi > 2⇒ xj > 3 i2 ∨ j3
xi > 3⇒ xj > 4 i3∨ ⊥

Better complexity and same propagation on some linear constraints

O(n) space (n binary clauses)

i3(xi ≤ 3) and j1(xj > 1) are unit clauses.
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Log Encoding [Walsh 00]

Domain

An atom ik for each value in [1, . . . , blog2 ubc] (assuming
D(x) = [0, . . . , ub])

I
∑ub

k=1 2k ∗ ik = v ⇔ xi = v

xi = 0: 00
xi = 1: 01
xi = 2: 10
xi = 3: 11

For interval domains, no need for extra clauses

Complexity

O(log2 n) space

Propagation

Encoding constraints is trickier, and less powerful
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Other Encodings

Many more!

Mix of direct and order encoding [lazy-FD, Numberjack]

Mix of AC and log encoding [Gavanelli 2007]

Mix of order and log encoding [Sugar, Tamura et al. 2006]

I Log encoding in a base B and order encoding inside a digit
I Excellent results on scheduling benchmarks! (with CDCL solvers)
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Order Encoding, Now and Then

Progress of SAT solvers

From a few hundreds variables in the 90’s to millions now

[Crawford & Backer 94]

Instances from Sadeh, with 10 jobs, 5 operations each (45m cutoff)

Tableau solved 90% of the instances (about 2 min when it did)

[Tamura, Tanjo & Banbara]

Same instances used during the CSP Solver Competition

Similar model, hardware of course incomparable, MiniSat

The hardest instance requires a few 100s conflicts at the most
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Closing the Open Shop

Instances

[Gueret & Prins]: hard for local search, extremely easy for SAT/CP

[Taillard]: Large, but relatively easy

[Brucker]: Three open instances

results

All instances solved and proved optimal
I The two hardest instances were decomposed into 120 subproblems, and

required up to 13h to solve

First approach to close the open shop!
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Solving vs. Encoding

[Tamura et al.]’s encoding is better than order encoding
I However, the huge difference with respect to [Crawford & Backer 94] is

due to the solver

It is now possible to efficiently solve some scheduling problem simply
by formulating it as a CNF formula
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A SAT-like Approach [Grimes & Hebrard 09]

CSP Solver Competition: scheduling benchmarks

I Some hard instances
I Generic format (XCSP), the notions of resource is lost, no global

constraint
I Yet many solvers solved them ([Sugar], [Choco], [Mistral])

Experiment with Weighted degree [Boussemart et al. 04]
I Similar simple model in [Mistral], same observation [Grimes]
I Open shop instances closed by [Tamura et al.] can be solved to

optimality in a few minutes

Are adaptive heuristics all that we need to solve disjunctive scheduling
problems?
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Constraint Model

t1 t2 t3 t4

t5 t6 t7 t8

t9 t10 t11 t12

20 50 80

60 45 20

50 30 40

Cmax

20

50

25

50

Model

A Variable for the start time of each task: ti ∈ [0, . . . ,Cmax ].
I Precedence constraints: ti + pi ≤ ti+1.
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Constraint Model

t2

t7

t9

b2,7

b2,9

b7,9

Model

A Variable for the start time of each task: ti ∈ [0, . . . ,Cmax ].
I Precedence constraints: ti + pi ≤ ti+1.

A Boolean Variable standing for the relative order of each pair of
conflicting tasks (disjunct):

I Binary Disjunctive constraints: bij =

{
0⇔ ti + pi ≤ tj
1⇔ tj + pj ≤ ti
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Search Strategy

Adaptive heuristic

Branch on Boolean variables only (order tasks on machines)

Minimum domain over weighted degree [Boussemart et al. 04]

Guided search

Follow the branch corresponding to the best solution [Beck 07]

' phase-saving heuristic in SAT [Pipatsrisawat & Darwiche 07]

Restarts

Geometric [Walsh 99], nogoods on restarts [Lecoutre et al. 07]

Almost no problem specific method
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CP or SAT?

Many similarities with SAT:
I Search variables are Boolean
I Propagation is very basic
I SAT-based search strategies

Some differences

Faster propagation, but no clause learning

Restarts + weighted degree “simulates” CDCL behavior?
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Experiment on Jobshop and Variants

Sequence-dependent setup times
I Transition between tasks on a machine
I Add the transition times in the disjunct

Maximum time lags
I Maximum duration between consecutive tasks in a job
I Precedences with negative durations

Just in Time scheduling
I Penalties for earliness and tardiness of each job
I Simple decomposition to express the new objective
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Experimental Protocol

This simple model was run on several standard benchmarks
I 1 hour cutoff
I 10 random runs, we take the best

Best known results on each benchmark (LS, CP, MIP)
I The cutoff may be different
I The hardware is different

Average % deviation (with respect to a method M in {MIP,CP, LS})
I

100×
∑

instance x

M objective(x)− SAT objective(x)

#instances × best objective(x)

I Negative: how much worse than M (when it is)
I Positive: how much better than M (when it is)
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Jobshop - Cmax - Taillard
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E. Nowicki and C. Smutnicki

J. of Scheduling (2005)

[2] SGMPCS (Ilog Scheduler)

J. C. Beck

JAIR (2007)
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Jobshop with setup times - Cmax - Brucker & Thiele
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Jobshop with time lags - Cmax - Lawrence (modified)
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“No-wait” Jobshop - Cmax - Lawrence
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Jobshop - earliness/tardiness - Beck & Refalo; Morton & Pentico
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SAT Strategies

Often comparable or better than the state of the art

I On benchmarks that are more favorable?
I On benchmarks that received less attention?

Adaptive heuristics are extremely powerful
I Effective at detecting bottlenecks
I Often better than dedicated CP approaches to prove optimality

F Even this “pseudo” learning helps!
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1 Introduction

2 Scheduling and SAT Encoding

3 Scheduling and SAT Heuristics

4 Scheduling and SAT Hybrids
Lazy clause generation
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SAT Hybrids

Pure reformulation is surprisingly efficient

However, simply using an adaptive heuristic and restart seems at least
as good

Hybridization

SAT-based learning AND CP-based propagation
I What is the best tradeoff?
I Does there need to be a tradeoff?

Lazy Clause Generation

SAT Modulo Theories
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Lazy Clause Generation [Ohrimenko, Stuckey & Codish 07] - [Feydy
& Stuckey 09]

Architecture

Channel a CP and SAT representations
I Search and propagation in CP
I Efficient domain representation and propagators

F Produce clauses to explain the pruning
F Just enough to extract a conflict

I The SAT formulation is generated lazily (learned during search)
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Lazy-FD: Example

xi < xj

Initial representation

CP view SAT view

D(xi ) {1, . . . , 4} i1 ∨ i2, i2 ∨ i3
D(xj) {2, . . . , 5} j2 ∨ j3, j3 ∨ j4

constraint xi < xj
constraint C (xi , xk , . . .)
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Lazy-FD: Example

xi < xj

An explanation clause is also produced

CP view SAT view

D(xi ) {2, . . . , 4} i1 ∨ i2, i2 ∨ i3
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Results on Resource Constrained Project Scheduling Problem
(RCPSP) [Schutt, Feydy, Stuckey & Wallace 09]

Resource Constrained Project Scheduling Problem (RCPSP)

Cumulative resources, each task has a demand rk for the resource k

Model

Formulated using sums on the order encoding

A fixed number of runs with a dedicated heuristic, then VSIDS
(adaptive heuristic)

Results

Favorable comparison with state of the art approaches
I MCS (implemented on top of Ilog-Scheduler [Laborie 05])
I CP approach by [Liess & Michelon 08]
I MIP approach by [Koné et al.]

54 open instances closed!
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SAT Modulo Theories (SMT)

Framework to hybridize dedicated solvers (Theories, or T-Solvers)
with CDCL solvers

I T-Solver view: a set of propositions each represented by a literal in F
I CDCL-Solver view: a CNF formula F partially representing the problem

CDCL-Solver makes decisions and analyzes the conflicts

T-Solver detects conflicts and/or propagates and generates
explanation clauses
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Several Theories

T-Solvers

Linear Real Arithmetic,

Arrays,

Bit-Vectors,

Equality with Uninterpreted Functions,

Difference Logic (i.e. formulas contain atoms of the form x − y ≤ k).

SMT for scheduling

Satisfiability Modulo Difference Logic.
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Example: Jobshop Scheduling

problem

t1 t2

t3 t4

t5 t6

2

6

5

z

5

4

3

T-Solver view

s1 − s2 ≤ −2
s3 − s4 ≤ −4
s5 − s6 ≤ −5
s2 − z ≤ −5
s4 − z ≤ −4
s6 − z ≤ −3
a− s1 ≤ 0
a− s3 ≤ 0
a− s5 ≤ 0

z − a ≤ 15

l1≺5 ⇔ s1−s5 ≤ −2
l5≺1 ⇔ s5−s1 ≤ −5
l2≺4 ⇔ s2−s4 ≤ −5
l4≺2 ⇔ s4−s2 ≤ −4
l3≺6 ⇔ s3−s6 ≤ −6
l6≺3 ⇔ s6−s3 ≤ −3

CDCL-Solver view

l1≺5 ∨ l5≺1

l2≺4 ∨ l4≺2

l3≺6 ∨ l6≺3
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Example: Jobshop Scheduling

Reasoning: detection of negative cycles ([Bellman-Ford])

a
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l1≺5 ⇔ s1 − s5 ≤ −2
l5≺1 ⇔ s5 − s1 ≤ −5
l2≺4 ⇔ s2 − s4 ≤ −5
l4≺2 ⇔ s4 − s2 ≤ −4
l3≺6 ⇔ s3 − s6 ≤ −6
l6≺3 ⇔ s6 − s3 ≤ −3
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Learned clause

l5≺1 ∨ l2≺4
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Results on Resource Constrained Project Scheduling Problem
(RCPSP) [Ansótegui et al. 11]

Two fomulations

Time encoding

Task encoding

Results

More robust than lazy-FD

State of the art for RCPSP!
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Conclusion

Scheduling with SAT is not as bad as it sounds

Generic algorithms can sometimes be difficult to match
I Adaptive heuristics
I Clause learning

Nogood learning [Schiex & Verfaillie 93] and explanation for global
constraints [Rochart & Jussien 03], disjunctive resource [Viĺım 05]?

I Somehow it does not have the same impact as in SAT

Hybridization (learning + dedicated reasoning) is the way to go
I SAT Modulo Theories?
I CDCL with global constraints and integer domains?
I Explanation algorithms for global constraints?
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