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Scheduling with Boolean Satisfiability

@ Important theoretical results

» [Cook-Levin] theorem: “First” NP-complete problem
> [Schaefer]'s dichotomy theorem

e Efficient algorithms (CDCL)

@ Successful in Circuit design, Model checking, Planning, ...
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Scheduling with Boolean Satisfiability

@ Important theoretical results

» [Cook-Levin] theorem: “First” NP-complete problem
> [Schaefer]'s dichotomy theorem

e Efficient algorithms (CDCL)

@ Successful in Circuit design, Model checking, Planning, ...

Association of scheduling and SAT not as natural as MIP or CP

@ Somewhat counter-intuitive (Boolean vs. Range, logical operator)
Apparent issue, the numerical aspect can often be avoided

@ Efficiency? SAT Solvers have not always been good
They have made huge progress in the past 10 years

@ All the approaches discussed here were developed in the last 5 years

@ Recent progress in SAT algorithms opens new research opportunities



Scheduling Problems

Terminology
@ Tasks (preemptive, non-preemptive)
@ Resources (disjunctive, cumulative, reservoir,...)
@ Objectives (makespan, tardiness, flow time,...)

@ Side constraints (precedence, time windows, time lags,...)

/54



Scheduling Problems

Terminology
@ Tasks (preemptive, non-preemptive)
@ Resources (disjunctive, cumulative, reservoir,...)
@ Objectives (makespan, tardiness, flow time,...)

@ Side constraints (precedence, time windows, time lags,...)

Tip of the iceberg
@ SAT-based methods have been applied to a very small subset
scheduling problems.

Minimization of makespan for non-preemptive tasks and disjunctive
resources
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Jobshop Scheduling Problem

20 50 80

Problem description

@ A set of non-preemptive tasks
@ Organized in jobs (sequences)
@ Requiring one of m disjunctive resources

@ Objective: minimize the total duration (Cpax)
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Boolean Satisfiability (SAT)

Problem
@ Boolean variables (atoms)
@ Propositional logic formula (often CNF)
o Literals: a,2a
@ Clauses: (aVfvg), (aVvfvg), (@avhb), (bvecVg)

@ Solution: assignment of atoms satisfying all clauses

Algorithms
@ Stochastic local search (GSAT, WalkSat,...)
@ Survey propagation

@ DPLL: Tree search + Unit propagation

@ CDCL: Conflict Driven Clause learning
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Conflict Driven Clause Leaning (CDCL)

“Evolved” from DPLL

@ Turning point: clause learning ([GRASP]| then [Chaff])
First SAT-Solver competition in 2002

Dive in the “search tree” (make decisions)

» Unit propagate: if a must be true, then 3 cannot satisfy a clause
» 3V bV ¢ effectively becomes bV ¢

* continue until a fix point is reached
Until reaching a conflicts (dead-end)

» Extract a learned clause
» Backjump several levels and unit-propagate the learned clause

Adaptive branching heuristics (weight conflicting literals)

And also: restart, simplify the clause base, forget clauses, etc.
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CDCL: Example
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Adaptive heuristics

@ Variable State Independent Decaying Sum (VSIDS)

> Idea ([Chaff]) weight literals in learned conflicts
» Decay: favor newer weights

@ Weighted degree heuristic
» On a failure: weight the constraint propagated last
@ Activity Based Search
» On a succes: weight the variables whose domain has changed

14 /54



Outline

© Scheduling and SAT Encoding
@ Formulation into SAT
@ Scheduling by encoding into SAT
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CNF encoding

@ The way we encode problems into SAT has a huge impact on
efficiency

» Encoding of Planning problems
» Encoding of CSP (Direct, Log, AC-encoding)
» Encoding of Pseudo-Boolean (Adder, Sorter)

@ All encodings are based on CSP formulations

» Some Boolean variables (e.g., relative orders of tasks)
» Start time variables (Integer variables)

@ Integer variables and precedence constraints
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Direct Encoding

Domain

@ An atom i, for each pair (x;,v € D(x;))

x; = 1. 1000
D — x; =2: 0100
v ! x; =3: 0010
x; =4: 0001

@ Must take at least a value: i1 Vio V...V iy,

@ Must take at most one value: /\V¢W€D(Xi)ﬁ\/ i
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Direct Encoding

Domain

@ An atom J, for each pair (x;, v € D(x;))

x; = 1. 1000
D — x; =2: 0100
v ! x; =3: 0010
x; =4: 0001

@ Must take at least a value: i1 Vio V...V iy,

@ Must take at most one value: /\v;éweD(x,-) iy Vi

Complexity

@ O(n?) space: n(n— 1)/2 binary clauses and one n-ary clause.

@ There are different ways to encode the constraints.
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Constraints: Tuple Encoding

Example of constraint: x; < x;

1 2 3 4

AV RV BV Vi
hVRE BVE &Vh

EVE Vi

4V J3

X
-thI—t“-ES
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Constraints: Tuple Encoding

Example of constraint: x; < x;

1 2 3 4

AV RV BV Vi
hVRE BVE &Vh

EVE Vi

4V J3

x
-hwr\Dl—l*-zs

Costly (in space) and weak (in propagation)
@ O(n?) binary clauses.

@ is(x; # 4) and ji(x; # 1) are inconsistent, but not unit propagated.

18 /54




Constraints: AC Encoding [Kasif 90]

Example of constraint: x; < x;

assignment
xi=1
Xji =2
Xj = 3
x;i =4

atom
i
i
i3
is

<< <L

support

2V 3V
3V s

Ja

1
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Constraints: AC Encoding [Kasif 90]

Example of constraint: x; < x;

assignment | atom support
xi=1 Vo 2V3Vis
x=2 | BV sVi
xi=3 i3 Vs
xi =4 E v o L

Same space complexity, better propagation

@ O(n) n-ary clauses

o is(x; #4) and ji(x; # 1) are unit clauses.
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Order Encoding [Crawford & Backer 94|

Domain
@ An atom J, for each pair (x;, v € D(x;))

x;=1: 1111
ek <y x; =2: 0111
v "= x;=3: 0011
x; =4: 0001

@ Bound propagation:
If x; < vihen xi<v+1
/\VED(X,-) Iy V I'V+1
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Order Encoding [Crawford & Backer 94|

Domain
@ An atom J, for each pair (x;, v € D(x;))

x;=1: 1111
D < v x; =2: 0111
v = x;=3: 0011
x; =4: 0001

@ Bound propagation:
If x; < v then x; <v+1
/\VED(X,-) Iy V iV+1

Complexity

@ O(n) space (n— 1 binary clauses)
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Constraints: BC Encoding

Example of constraint: x; < x;

relation clause
xi>0=x>1|L1Vj
xi>1=x;>2 I'1\/_E
xi>2=x;>3 i2\/j§
xi>3=x;>4| i3V L
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Constraints: BC Encoding

Example of constraint: x; < x;

relation clause
xi>0=x>1|LVj
xi>1=x>2|ihVj
Xj > 2 = Xj > 31 i \/]5
xi>3=x;>4| VL

Better complexity and same propagation on some linear constraints

@ O(n) space (n binary clauses)

e i3(x; <3) and ji(x; > 1) are unit clauses.

21/54



Log Encoding [Walsh 00]

Domain
@ An atom i for each value in [1,..., |log, ub|] (assuming
D(X) = [0, ooy Ub])
Xj = 0: 00
ub Ak - o x;=1: 01
Yo 2xik=vexi=v X =2 10
x; =3 11

@ For interval domains, no need for extra clauses
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Log Encoding [Walsh 00]

Domain
@ An atom i for each value in [1,..., |log, ub|] (assuming
D(X) = [0, ooy Ub])
Xj = 0: 00
wb ok _  x=1 ol
Yo 2xik=vexi=v X =2 10
x; =3 11

@ For interval domains, no need for extra clauses

Complexity
@ O(log, n) space

Propagation
@ Encoding constraints is trickier, and less powerful
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Other Encodings

Many more!
@ Mix of direct and order encoding [lazy-FD, Numberjack|

@ Mix of AC and log encoding [Gavanelli 2007]
@ Mix of order and log encoding [Sugar, Tamura et al. 2006]
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Other Encodings

Many more!
@ Mix of direct and order encoding [lazy-FD, Numberjack|
@ Mix of AC and log encoding [Gavanelli 2007]

@ Mix of order and log encoding [Sugar, Tamura et al. 2006]

Log encoding in a base B and order encoding inside a digit
Excellent results on scheduling benchmarks! (with CDCL solvers)
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Order Encoding, Now and Then

Progress of SAT solvers
@ From a few hundreds variables in the 90’s to millions now

[Crawford & Backer 94]
@ Instances from Sadeh, with 10 jobs, 5 operations each (45m cutoff)

@ Tableau solved 90% of the instances (about 2 min when it did)

[Tamura, Tanjo & Banbara]
@ Same instances used during the CSP Solver Competition

@ Similar model, hardware of course incomparable, MiniSat

@ The hardest instance requires a few 100s conflicts at the most

24 /54



Closing the Open Shop

Instances
@ [Gueret & Prins|: hard for local search, extremely easy for SAT/CP
o [Taillard]: Large, but relatively easy

@ [Brucker|: Three open instances
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Closing the Open Shop

Instances
@ [Gueret & Prins|: hard for local search, extremely easy for SAT/CP
o [Taillard]: Large, but relatively easy

@ [Brucker|: Three open instances

results

@ All instances solved and proved optimal

The two hardest instances were decomposed into 120 subproblems, and
required up to 13h to solve

@ First approach to close the open shop!
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Solving vs. Encoding

@ [Tamura et al.|'s encoding is better than order encoding

» However, the huge difference with respect to [Crawford & Backer 94] is
due to the solver

@ It is now possible to efficiently solve some scheduling problem simply
by formulating it as a CNF formula

26 /54



Outline

© Scheduling and SAT Heuristics
@ A SAT-like Approach
@ Comparison with the State of the Art
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A SAT-like Approach [Grimes & Hebrard 09]

@ CSP Solver Competition: scheduling benchmarks
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@ CSP Solver Competition: scheduling benchmarks

» Some hard instances

» Generic format (XCSP), the notions of resource is lost, no global
constraint

> Yet many solvers solved them ([Sugar], [Choco], [Mistral])

@ Experiment with Weighted degree [Boussemart et al. 04]

» Similar simple model in [Mistral], same observation [Grimes]
» Open shop instances closed by [Tamura et al.] can be solved to
optimality in a few minutes

@ Are adaptive heuristics all that we need to solve disjunctive scheduling
problems?
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Constraint Model

Model

@ A Variable for the start time of each task: t; € [0,..., Cpaxl.
Precedence constraints: t; + p; < tj;1.
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Constraint Model

Model

@ A Variable for the start time of each task: t; € [0,..., Cpaxl.
Precedence constraints: t; + p; < tji1.
@ A Boolean Variable standing for the relative order of each pair of
conflicting tasks (disjunct):
O&ti+p <t

Binary Disjunctive constraints: b = { 1ot +p; < £
TP S
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Adaptive heuristic
@ Branch on Boolean variables only (order tasks on machines)

@ Minimum domain over weighted degree [Boussemart et al. 04]

Guided search
@ Follow the branch corresponding to the best solution [Beck 07]

@ ~ phase-saving heuristic in SAT [Pipatsrisawat & Darwiche 07]

Restarts

@ Geometric [Walsh 99], nogoods on restarts [Lecoutre et al. 07]

@ Almost no problem specific method
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» Search variables are Boolean
» Propagation is very basic
» SAT-based search strategies
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CP or SAT?

@ Many similarities with SAT:

» Search variables are Boolean
» Propagation is very basic
» SAT-based search strategies

Some differences
@ Faster propagation, but no clause learning

@ Restarts + weighted degree “simulates” CDCL behavior?

32 /54



Experiment on Jobshop and Variants

33/54



Experiment on Jobshop and Variants

@ Sequence-dependent setup times
» Transition between tasks on a machine

33 /54



Experiment on Jobshop and Variants

@ Sequence-dependent setup times

» Transition between tasks on a machine
» Add the transition times in the disjunct

33 /54



Experiment on Jobshop and Variants

@ Sequence-dependent setup times

» Transition between tasks on a machine
» Add the transition times in the disjunct

@ Maximum time lags
» Maximum duration between consecutive tasks in a job

33 /54



Experiment on Jobshop and Variants

@ Sequence-dependent setup times

» Transition between tasks on a machine
» Add the transition times in the disjunct

@ Maximum time lags

» Maximum duration between consecutive tasks in a job
» Precedences with negative durations

33 /54



Experiment on Jobshop and Variants

@ Sequence-dependent setup times

» Transition between tasks on a machine
» Add the transition times in the disjunct

@ Maximum time lags

» Maximum duration between consecutive tasks in a job
» Precedences with negative durations

@ Just in Time scheduling
> Penalties for earliness and tardiness of each job

33 /54



Experiment on Jobshop and Variants

@ Sequence-dependent setup times

» Transition between tasks on a machine
» Add the transition times in the disjunct

@ Maximum time lags

» Maximum duration between consecutive tasks in a job
» Precedences with negative durations

@ Just in Time scheduling

> Penalties for earliness and tardiness of each job
» Simple decomposition to express the new objective
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@ This simple model was run on several standard benchmarks
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» 10 random runs, we take the best

@ Best known results on each benchmark (LS, CP, MIP)

» The cutoff may be different
» The hardware is different
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» 10 random runs, we take the best
@ Best known results on each benchmark (LS, CP, MIP)
» The cutoff may be different
» The hardware is different

@ Average % deviation (with respect to a method M in {MIP, CP,LS})

>
100 x Z M objective(x) — SAT objective(x)

#instances X best objective(x)

instance x

» Negative: how much worse than M (when it is)
» Positive: how much better than M (when it is)
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Jobshop with time lags
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“No-wait” Jobshop - C,,.x - Lawrence
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PhD thesis (2009)
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Jobshop - earliness/tardiness - Beck & Refalo; Morton & Pentico

% Deviation
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SAT Strategies

@ Often comparable or better than the state of the art

» On benchmarks that are more favorable?
» On benchmarks that received less attention?

@ Adaptive heuristics are extremely powerful

» Effective at detecting bottlenecks
» Often better than dedicated CP approaches to prove optimality

* Even this “pseudo” learning helps!
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Outline

@ Scheduling and SAT Hybrids
@ Lazy clause generation

@ Satisfiability Modulo Theories
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SAT Hybrids

@ Pure reformulation is surprisingly efficient

@ However, simply using an adaptive heuristic and restart seems at least
as good

Hybridization
@ SAT-based learning AND CP-based propagation

What is the best tradeoff?
Does there need to be a tradeoff?

o Lazy Clause Generation
@ SAT Modulo Theories
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Lazy Clause Generation [Ohrimenko, Stuckey & Codish 07] - [Feydy
& Stuckey 09]

Architecture

@ Channel a CP and SAT representations
Search and propagation in CP
Efficient domain representation and propagators

Produce clauses to explain the pruning
Just enough to extract a conflict

The SAT formulation is generated lazily (learned during search)
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Lazy-FD: Example

Xi < Xj
@ Initial representation

| CPuview | SAT view
D(X,') {1,...,4} i Vi, o Vi3
D(XJ) {27"'75} _]'_2\/j'3,j_3\/j4
constraint Xj < Xj
constraint | C(xj, Xk, .. .)
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Xi < Xj
@ Some constraint reduces the domain of x; to {2,...,5}

| CPuview | SAT view
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Xi < Xj

@ An explanation clause T V i1 is produced, and the unit literal /1 is

propagated
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Lazy-FD: Example

Xi < Xj

@ The propagator for x; < x; is triggered and reduces the domain of x;

‘ CP view ‘ SAT view

D(XI) {2774} EVI%E\/B

D(XJ) {3775} ./2\/./37./3 \/j4
constraint Xj < Xj B
constraint | C(xj, Xk, .. .) TV i
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Lazy-FD: Example

Xi < Xj
@ An explanation clause is also produced

| CP view | SAT view
D(X,') {2, R ,4} nViibVi3
Dis) | {3....5} |BVhbVi
constraint Xj < Xj iV Jo
constraint | C(x;, Xk, . . .) TVi
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Results on Resource Constrained Project Scheduling Problem
(RCPSP) [Schutt, Feydy, Stuckey & Wallace 09]
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Results on Resource Constrained Project Scheduling Problem
(RCPSP) [Schutt, Feydy, Stuckey & Wallace 09]

Resource Constrained Project Scheduling Problem (RCPSP)

@ Cumulative resources, each task has a demand ry for the resource k

Model
@ Formulated using sums on the order encoding

@ A fixed number of runs with a dedicated heuristic, then VSIDS
(adaptive heuristic)

Results

@ Favorable comparison with state of the art approaches

MCS (implemented on top of llog-Scheduler [Laborie 05])
CP approach by [Liess & Michelon 08]
MIP approach by [Koné et al |

@ 54 open instances closed!
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SAT Modulo Theories (SMT)

e Framework to hybridize dedicated solvers (Theories, or T-Solvers)
with CDCL solvers
» T-Solver view: a set of propositions each represented by a literal in F
» CDCL-Solver view: a CNF formula F partially representing the problem

@ CDCL-Solver makes decisions and analyzes the conflicts

@ T-Solver detects conflicts and/or propagates and generates
explanation clauses
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Several Theories

T-Solvers
@ Linear Real Arithmetic,
@ Arrays,
@ Bit-Vectors,
@ Equality with Uninterpreted Functions,

o Difference Logic (i.e. formulas contain atoms of the form x — y < k).

.

SMT for scheduling
o Satisfiability Modulo Difference Logic.
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Example: Jobshop Scheduling

T-Solver view

problem 51— < =2 z—a<15

s3—s54 < —4

S5 —s6 < =5

ss—z< -5 h<s < s1—s5 < —2
s —z< —4 <1 & s5—s; < =5
ss—z< -3 h<4 <& sp—s4 < =5
a—s<0 /4<2<:>S4—52§—4
a—s53<0 <6 & s3—s6 < —6
a—s5<0 ls<3 < se—s3 < _31
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T-Solver view

problem 51— < =2 z—a<15

s3—s54 < —4

S5 — Sp S -5

ss—z< -5 h<s < s1—s5 < —2
s —z< —4 <1 & s5—s; < =5
ss—z< -3 h<4 <& sp—s4 < =5
a—s<0 /4<2<:>S4—52§—4
a—s53<0 <6 & s3—s6 < —6
a—s5<0 ls<3 < se—s3 < —3

V.

CDCL-Solver view
h<s V ls<1
S hzaVi<o
h<6 V lo<3
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@ Reasoning: detection of negative cycles ([Bellman-Ford])
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Example: Jobshop Scheduling

@ Reasoning: detection of negative cycles ([Bellman-Ford])

h<s & s1—s5 < =2
<1< 55 —s51 < -5
h<4 < s — 54 < =5
lacr & 54— 5 < —4
k<6 < s3 — 55 < —6
lo<3 < s —s3 < —3

Learned clause
@ 551V by J
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Results on Resource Constrained Project Scheduling Problem
(RCPSP) [Ansétegui et al. 11]

Two fomulations
@ Time encoding

@ Task encoding

Results
@ More robust than lazy-FD
@ State of the art for RCPSP!
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Conclusion

Scheduling with SAT is not as bad as it sounds
Generic algorithms can sometimes be difficult to match

» Adaptive heuristics
» Clause learning

Nogood learning [Schiex & Verfaillie 93] and explanation for global
constraints [Rochart & Jussien 03], disjunctive resource [Vilim 05]7?

» Somehow it does not have the same impact as in SAT
Hybridization (learning + dedicated reasoning) is the way to go

» SAT Modulo Theories?
» CDCL with global constraints and integer domains?
» Explanation algorithms for global constraints?
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