Algorithms for Computational Logic
 Overconstrained Problems

Emmanuel Hebrard (adapted from) João Marques Silva

(1) Maximum Satisfiability
(2) Modeling Examples
(3) Problems with MaxSAT Solving

4 MaxSAT Algorithms with Iterative Search
(5) Core-Guided MaxSAT
(6) The MaxHS algorithm for MaxSAT Outline

(1) Maximum Satisfiability

2 Modeling Examples

(3) Problems with MaxSAT Solving
(4) MaxSAT Algorithms with Iterative Search
(5) Core-Guided MaxSAT

- Fu\&Malik's Algorithm
- MSU3 Algorithm
(6) The MaxHS algorithm for MaxSAT
Maximum satisfiability

$x_{6} \vee x_{2}$	$\neg x_{6} \vee x_{2}$	$\neg x_{2} \vee x_{1}$		
$\neg x_{6} \vee x_{8}$	$x_{6} \vee \neg x_{8}$	$x_{2} \vee x_{4}$		
	$\neg x_{4} \vee x_{5}$			
	$\neg x_{7} \vee x_{5}$	$\neg x_{5} \vee x_{3}$	$\quad \neg x_{3}$	
:---				

- Unsatisfiable formula
- Find largest subset of clauses that is satisfiable: the complement of a minimum-size correction set
- For above example, MaxSAT solution is 2:
- By removing 2 clauses, the remaining are satisfiable

CNRS

		Hard Clauses?	
		No	Yes
Weights?	No	Plain	Partial
	Yes	Weighted	Weighted Partial

- Must satisfy hard clauses, if any
- Compute set of satisfied soft clauses with maximum cost
- Without weights, cost of each falsified soft clause is 1
- Or, compute set of falsified soft clauses with minimum cost
(s.t. hard \& remaining soft clauses are satisfied)
- Note: goal is to compute set of satisfied (or falsified) clauses; not just the cost!
Outline
(1) Maximum Satisfiability
(2) Modeling Examples
(3) Problems with MaxSAT Solving

4) MaxSAT Algorithms with Iterative Search
(5) Core-Guided MaxSAT

- Fu\&Malik's Algorithm
- MSU3 Algorithm
(6) The MaxHS algorithm for MaxSAT
- The problem:
- Graph $G=(V, E)$
- Vertex cover $U \subseteq V$
\star For each $\left(v_{i}, v_{j}\right) \in E$, either $v_{i} \in U$ or $v_{j} \in U$
- Minimum vertex cover: vertex cover U of minimum size

> Vertex cover: $\left\{v_{2}, v_{3}, v_{4}\right\}$
> Min vertex cover: $\left\{v_{1}\right\}$

- Partial MaxSAT formulation:

- Variables: x_{i} for each $v_{i} \in V$, with $x_{i}=1$ iff $v_{i} \in U$
- Hard clauses: $\left(x_{i} \vee x_{j}\right)$ for each $\left(v_{i}, v_{j}\right) \in E$
- Soft clauses: $\left(\neg x_{i}\right)$ for each $v_{i} \in V$
\star I.e. preferable not to include vertices in U

$$
\begin{aligned}
\mathcal{F}_{H} & =\left\{\left(x_{1} \vee x_{2}\right),\left(x_{1} \vee x_{3}\right),\left(x_{1} \vee x_{4}\right)\right\} \\
\mathcal{F}_{S} & =\left\{\left(\neg x_{1}\right),\left(\neg x_{2}\right),\left(\neg x_{3}\right),\left(\neg x_{4}\right)\right\}
\end{aligned}
$$

- Hard clauses have cost ∞
- Soft clauses have cost 1
- Given undirected graph $G=(V, E)$:
- A clique is a complete subgraph of G, i.e. it is a set $L \subseteq V$ such that $\forall_{u, v \in L}(u \neq v) \rightarrow(u, v) \in E$
- A vertex cover $C \subseteq V$ is such that $\forall(u, v) \in E u \in C \vee v \in C$
- An independent set $I \subseteq V$ is such that $\forall_{u, v \in I}(v, u) \notin E$
- Properties:
- If I is an independent set of $G=(V, E)$, then

$$
\star V-I \text { is a vertex cover of } G
$$

$\star \quad I$ is a clique of the complement graph of G, G^{C}

- A maximum independent set of G corresponds to a maximum clique of G^{C}

Independent sets and cliques - examples

- G:
- G^{C} :

- $\left\{v_{1}, v_{2}, v_{3}\right\}$ is clique of G and an independent set of G^{C}
- $\left\{v_{4}\right\}$ is a vertex cover of G^{C}

$$
\begin{aligned}
& \mathcal{F}_{H} \triangleq\left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(\neg x_{3} \vee \neg x_{4}\right) \\
& \mathcal{F}_{S} \triangleq\left\{\left(x_{1}\right),\left(x_{2}\right),\left(x_{3}\right),\left(x_{4}\right)\right\}
\end{aligned}
$$

- MaxSAT formulation:
- x_{i} : assigned 1 if $v_{i} \in V$ included in clique
- If $\left\{x_{i}, x_{j}\right\} \notin E$, add hard clause $\left(\neg x_{i} \vee \neg x_{j}\right)$
- Soft clauses $\left(x_{i}\right)$ for $v_{i} \in V$
- Why? Add as many vertices as possible to the clique such that non-adjacent vertices are not both selected

Correct circuit

Input stimuli: $\langle r, s\rangle=\langle 0,1\rangle$
Valid output: $\langle y, z\rangle=\langle 0,0\rangle$

Faulty circuit

Input stimuli: $\langle r, s\rangle=\langle 0,1\rangle$
Invalid output: $\langle y, z\rangle=\langle 0,0\rangle$

- The model:
- Hard clauses: Input and output values
- Soft clauses: CNF representation of circuit, each gate aggregated in group of clauses
- The problem:
- Maximize number of satisfied clauses (i.e. circuit gates)
- Universe of software packages: $\left\{p_{1}, \ldots, p_{n}\right\}$
- Difference with respect to original installation: $\left\{p_{1}^{\Delta}, \ldots, p_{n}^{\Delta}\right\}$
- Incompatibilies, dependencies and non-regression
- Hard clauses
- Objective: minimize $\sum_{i=1}^{n} p_{i}^{\Delta}$
- Soft clauses $\left(p_{1}^{\Delta}\right) \wedge\left(p_{2}^{\Delta}\right) \wedge \ldots \wedge\left(p_{i}^{\Delta}\right)$

Many other applications

- Error localization in C code

- Haplotyping with pedigrees
- Course timetabling
- Combinatorial auctions
- Minimizing Disclosure of Private Information in Credential-Based Interactions
- Reasoning over Biological Networks
- Binate/unate covering
- Haplotype inference
- Digital filter design
- FSM synthesis
[e.g. HS'96]
- Logic minimization
[e.g. HS'96]
- ...
- ... Outline

(1) Maximum Satisfiability

2) Modeling Examples
(3) Problems with MaxSAT Solving
3) MaxSAT Algorithms with Iterative Search
(5) Core-Guided MaxSAT

- Fu\&Malik's Algorithm
- MSU3 Algorithm
(6) The MaxHS algorithm for MaxSAT

Problems with unit propagation

- Example formula:

$$
\mathcal{F} \triangleq\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)
$$

- Unit propagation falsifies two clauses: $\left(\neg x_{1} \vee \neg x_{2}\right)$ and $\left(\neg x_{1} \vee \neg x_{3}\right)$
- But, the MaxSAT solution is $1 ; \mathcal{S} \subseteq \mathcal{F}$ is satisfiable:

$$
\mathcal{S} \triangleq\left(x_{2}\right) \wedge\left(x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)
$$

- Cannot apply unit propagation when solving MaxSAT
- Cannot apply hallmarks of CDCL SAT solving
- MaxSAT solving requires dedicated algorithms Outline

(1) Maximum Satisfiability

2) Modeling Examples
(3) Problems with MaxSAT Solving

4 MaxSAT Algorithms with Iterative Search
(5) Core-Guided MaxSAT

- Fu\&Malik's Algorithm
- MSU3 Algorithm
(6) The MaxHS algorithm for MaxSAT
- Cost of assignment:
- Sum of weights of falsified clauses

- Optimum solution (OPT):
- Assignment with minimum cost
- Upper Bound (UB):
- Assignment with cost \geq OPT
- E.g. $\sum_{c_{j} \in \mathcal{F}} w_{j}+1$; hard clauses may be inconsistent
- Lower Bound (LB):
- No assignment with cost \leq LB
- E.g. -1 ; it may be possible to satisfy all soft clauses
- Relax each soft clause $c_{j}:\left(c_{j} \vee r_{j}\right)$ (on-demand in core-guided)

MaxSAT with iterative SAT solving - refine UB

- Worst-case \# of iterations exponential on instance size (\# bits)
- Improvement: use binary search instead
- Many example solvers: Minisat+, SAT4J, QMaxSat
[ES06,LBP10,KZFH12] MaxSAT with iterative SAT solving - complete example

Example CNF formula Rel $1 x$ all clauses; Set $U B=12+1$ Formula is SAT; E.g. all $x_{i}=0$ and $r_{1}=r_{7}=r_{9}=1$ (i.e. cost $=3$) Refine $U B=3$ Formula is SAT; E.g. $x_{1}=x_{2}=1$;
$x_{3}=\ldots=$ AtMostk/PB constraints \quad ost $=2$) Refine $U B=2$ All (possibly many); terminate MaxSAT sı over all relaxation variables $\quad 3=2$ soft clauses relaxed

- Invariant: $L B_{k} \leq U B_{k}-1$
- Require $\sum w_{i} r_{i} \leq m_{0}$
- Repeat
- If UNSAT, refine $L B_{1}=m_{0}, \ldots$
- Compute new mid value m_{1}, \ldots
- If SAT, refine $U B_{3}=m_{2}, \ldots$
- Until $L B_{k}=U B_{k}-1$
- Worst-case \# of iterations linear on instance size

Branch\&bound MaxSAT algorithm

Input: $\max -\operatorname{sat}(\phi, U B):$ A CNF formula ϕ and an upper bound $U B$
1: $\phi \leftarrow$ simplifyFormula (ϕ);
2: if $\phi=\emptyset$ or ϕ only contains empty clauses then
3: return \#emptyClauses (ϕ);
end if
$L B \leftarrow \# e m p t y C l a u s e s(\phi)+$ underestimation $(\phi, U B) ;$
6: if $L B \geq U B$ then
7: return $U B$;
end if
: $x \leftarrow$ select Variable (ϕ);
10: $U B \leftarrow \min \left(U B, \max -\operatorname{sat}\left(\phi_{\bar{x}}, U B\right)\right)$;
11: return $\min \left(U B, \max -\operatorname{sat}\left(\phi_{x}, U B\right)\right)$;
[LMP'07]
Output: The minimal number of unsatisfied clauses of ϕ

- Many techniques for computing lower bounds, i.e. for lower bounding the search

(1) Maximum Satisfiability

(2) Modeling Examples
(3) Problems with MaxSAT Solving
(4) MaxSAT Algorithms with iterative Search
(5) Core-Guided MaxSAT

- Fu\&Malik's Algorithm
- MSU3 Algorithm
(6) The MaxHS algorithm for MaxSAT Core-guided MaxSAT

$x_{6} \vee x_{2}$	$\neg x_{6} \vee x_{2}$	$\neg x_{2} \vee x_{1}$	$\neg x_{1}$
$\neg x_{6} \vee x_{8}$	$x_{6} \vee \neg x_{8}$	$x_{2} \vee x_{4}$	$\neg x_{4} \vee x_{5}$
$x_{7} \vee x_{5}$	$\neg x_{7} \vee x_{5}$	$\neg x_{5} \vee x_{3}$	$\neg x_{3}$

- Goal: Do not relax all clauses
- Why?
\star Some clauses never relevant for computing MaxSAT solution
\star Simplify cardinality/PB constraints
- How to relax clauses on demand?
- Relax clauses given computed unsatisfiable cores
\star Many alternative ways to instrument code-guided algorithms

Fu\&Malik's (FM) core-guided algorithm

Example CNF formula 「 ormula is UNSAT; OPT $\leq|\varphi|-1$; Get unsat co e Add relaxation variables and AtMost1 ionstraint Formula is (a rain) UNSAT; OPT $\leq|\varphi|-2$; Get unsat core | Add new relax | Only AtMost1 | id AtMost | $\begin{array}{c}\text { Some clauses } \\ \text { ance is } n \\ \text { constraints used }\end{array}$ | $\begin{array}{c}\text { Relaxed soft } \\ \text { not relaxed }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\varphi \mid-\mathcal{I}=12$ clauses remain soft | | | | |

Another example

$$
\mathcal{F}_{S} \triangleq\left(x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3}\right) \wedge\left(\neg x_{3}\right) \wedge\left(x_{4} \vee \neg x_{5}\right) \wedge\left(\neg x_{4} \vee x_{5}\right)
$$

MSU3 core-guided algorithm

Example CNF formula 「 ormula is UNSAT; $D P T \leq|\varphi|-1$; Get unsat c re Add relaxation variables and AtMost1 ionstraint Formula is (ggain) UNSAT; OPT $\leq|\psi|-2$; Get unsat core Add new relay AtMostk/PB id AtMo Some clauses tance is Relaxed soft clauses solution is $|\varphi|-\mathcal{I}=12$ constraints used not relaxed become hard
Another example

$$
\mathcal{F}_{S} \triangleq\left(x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3}\right) \wedge\left(\neg x_{3}\right) \wedge\left(x_{4} \vee \neg x_{5}\right) \wedge\left(\neg x_{4} \vee x_{5}\right)
$$

(1) Maximum Satisfiability

(2) Modeling Examples

(3) Problems with MaxSAT Solving

(4) MaxSAT Algorithms with Iterative Search

(5) Core-Guided MaxSAT

- Fu\&Malik's Algorithm
- MSU3 Algorithm
(6) The MaxHS algorithm for MaxSAT
- Remark 1: The MaxSAT solution is a smallest MCS
- Remark 2: Any MCS is a hitting set of all MUSes
- Approach:
(1) Let \mathcal{K} be a set of unsatisfiable cores (or MUSes)
(2) Find a minimum hitting set \mathcal{H} of the set \mathcal{K} of already computed cores (or MUSes)
(3) Check satistisfability of $\mathcal{F} \backslash \mathcal{H}$
(4) If satisfiable, then \mathcal{H} is a smallest MCS; terminate and return \mathcal{H}

5 Otherwise, compute core (or MUS) and add it to \mathcal{K}
(6) Loop from 2

- Issue: worst-case number of iterations worst-case exponential on number of clauses
- But, quite effective in practice

MHS approach for MaxSAT - example

$$
\mathcal{K}=\emptyset
$$

- Find MHS of \mathcal{K} : \emptyset
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$? No

$$
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
$$

- Core of $\mathcal{F}:\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$. Update \mathcal{K}_{1}
- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- Core of $\mathcal{F}:\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}$. Update \mathcal{K}
- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}$. Update \mathcal{K}
- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{0}\right\}$

Core Extraction Using CDCL

ıerinnate \& return 2

- Assign the activation literals at a special decision level (-1)
- CDCL fails when finding a contradiction at level 0
- The implication graph must involve some activation literals
- Do clause resolution until the cut contains only activation literals
- The resulting clause is a MUS of the original formula

Level Dec. Unit Prop.

CNRS

Algorithm: MAXHS
$\mathcal{K} \emptyset / /$ The MUSs
$\sigma \leftarrow \emptyset / /$ The optimal model
while satisfiability \neq SAT do
$h s \leftarrow$ Find-MinCost-HittingSet($\mathcal{K})$;
$(s a t, \kappa, \sigma) \leftarrow \operatorname{CDCL}(\mathcal{F} \backslash h s)$; add κ to \mathcal{K};
end
return σ;

- CDCL returns the tuple (sat, κ, σ) where:
- sat is in \{SAT, UNSAT, UNKNOWN\}
- κ is a MUS
- σ is a solution if $=($ SAT $)=$ true

- Je recrute un postdoc!

- Planification des prises de vue et vidages d'une constellation de satellites d'observation (Projet JAPETUS PROMETHEE, CNES, CNRS, LEANSPACE)

