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Maximum satisfiability

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Unsatisfiable formula

Find largest subset of clauses that is satisfiable: the complement of a minimum-size correction set

For above example, MaxSAT solution is 2:

▶ By removing 2 clauses, the remaining are satisfiable
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MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

Must satisfy hard clauses, if any

Compute set of satisfied soft clauses with maximum cost

▶ Without weights, cost of each falsified soft clause is 1

Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost !
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Minimum vertex cover

The problem:

▶ Graph G = (V ,E)
▶ Vertex cover U ⊆ V

⋆ For each (vi , vj ) ∈ E , either vi ∈ U or vj ∈ U

▶ Minimum vertex cover: vertex cover U of minimum size

v1

v2

v3

v4

Vertex cover: {v2, v3, v4}
Min vertex cover: {v1}
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Minimum vertex cover – MaxSAT formulation

Partial MaxSAT formulation:

▶ Variables: xi for each vi ∈ V , with xi = 1 iff vi ∈ U
▶ Hard clauses: (xi ∨ xj ) for each (vi , vj ) ∈ E
▶ Soft clauses: (¬xi ) for each vi ∈ V

⋆ I.e. preferable not to include vertices in U

v1

v2

v3

v4

FH = {(x1 ∨ x2), (x1 ∨ x3), (x1 ∨ x4)}
FS = {(¬x1), (¬x2), (¬x3), (¬x4)}

▶ Hard clauses have cost ∞
▶ Soft clauses have cost 1
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Independent sets and cliques

Given undirected graph G = (V ,E):

▶ A clique is a complete subgraph of G , i.e. it is a set L ⊆ V such that ∀u,v∈L(u ̸= v) → (u, v) ∈ E
▶ A vertex cover C ⊆ V is such that ∀(u,v)∈E u ∈ C ∨ v ∈ C
▶ An independent set I ⊆ V is such that ∀u,v∈I (v , u) ̸∈ E

Properties:
▶ If I is an independent set of G = (V ,E), then

⋆ V − I is a vertex cover of G
⋆ I is a clique of the complement graph of G , GC

▶ A maximum independent set of G corresponds to a maximum clique of GC
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Independent sets and cliques – examples

G :

v1 v2

v3v4

GC :

v1 v2

v3v4

{v1, v2, v3} is clique of G and an independent set of GC

{v4} is a vertex cover of GC
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Maximum clique with MaxSAT

v1 v2

v3v4

FH ≜ (¬x1 ∨ ¬x4) ∧ (¬x3 ∨ ¬x4)
FS ≜ {(x1), (x2), (x3), (x4)}

MaxSAT formulation:

▶ xi : assigned 1 if vi ∈ V included in clique
▶ If {xi , xj} ̸∈ E , add hard clause (¬xi ∨ ¬xj )
▶ Soft clauses (xi ) for vi ∈ V
▶ Why? Add as many vertices as possible to the clique such that non-adjacent vertices are not both selected
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Design debugging

[SMVLS’07]

Correct circuit

AND

AND

r

s
y

z

Input stimuli: ⟨r , s⟩ = ⟨0, 1⟩
Valid output: ⟨y , z⟩ = ⟨0, 0⟩

Faulty circuit

AND

r

s
y

zOR

Input stimuli: ⟨r , s⟩ = ⟨0, 1⟩
Invalid output: ⟨y , z⟩ = ⟨0, 0⟩

The model:

▶ Hard clauses: Input and output values
▶ Soft clauses: CNF representation of circuit, each gate aggregated in group of clauses

The problem:

▶ Maximize number of satisfied clauses (i.e. circuit gates)
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Software package upgrades with MaxSAT

[MBCV’06,TSJL’07,AL’08,ALMS’09,ALBL’10]

Universe of software packages: {p1, . . . , pn}

Difference with respect to original installation: {p∆
1 , . . . , p

∆
n }

Incompatibilies, dependencies and non-regression

▶ Hard clauses

Objective: minimize
∑n

i=1 p
∆
i

▶ Soft clauses (p∆1 ) ∧ (p∆2 ) ∧ . . . ∧ (p∆i )
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Many other applications

Error localization in C code [JM’11]

Haplotyping with pedigrees [GLMSO’10]

Course timetabling [AN’10]

Combinatorial auctions [HLGS’08]

Minimizing Disclosure of Private Information in Credential-Based Interactions [AVFPS’10]

Reasoning over Biological Networks [GL’12]

Binate/unate covering

▶ Haplotype inference [GMSLO’11]

▶ Digital filter design [ACFM’08]

▶ FSM synthesis [e.g. HS’96]

▶ Logic minimization [e.g. HS’96]

▶ ...

...
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Problems with unit propagation

Example formula:
F ≜ (x1) ∧ (x2) ∧ (x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3)

Unit propagation falsifies two clauses: (¬x1 ∨ ¬x2) and (¬x1 ∨ ¬x3)

But, the MaxSAT solution is 1; S ⊆ F is satisfiable:

S ≜ (x2) ∧ (x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3)

Cannot apply unit propagation when solving MaxSAT

Cannot apply hallmarks of CDCL SAT solving

MaxSAT solving requires dedicated algorithms
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MaxSAT with iterative SAT solving – definitions

Cost of assignment:

▶ Sum of weights of falsified clauses

LB

OPT

UB

Optimum solution (OPT):

▶ Assignment with minimum cost

Upper Bound (UB):

▶ Assignment with cost ≥ OPT
▶ E.g.

∑
cj∈F wj + 1; hard clauses may be inconsistent

Lower Bound (LB):

▶ No assignment with cost ≤ LB
▶ E.g. −1; it may be possible to satisfy all soft clauses

Relax each soft clause cj : (cj ∨ rj) (on-demand in core-guided)
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MaxSAT with iterative SAT solving – refine UB

i ← 0

UBi ← ComputeUB

G ← F ∪ (
∑

wj rj < UBi )

SAT (G)?

i ← i + 1

UBi ← UpdateUB

return UBi

no

yes

LB

OPT

UB0UB0UB1UB2UBk

Worst-case # of iterations exponential on
instance size (# bits)

▶ Improvement: use binary search instead

Many example solvers: Minisat+, SAT4J,
QMaxSat [ES06,LBP10,KZFH12]
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MaxSAT with iterative SAT solving – complete example

x6 ∨ x2∨r1∨r1 ¬x6 ∨ x2∨r2∨r2 ¬x2 ∨ x1∨r3∨r3 ¬x1∨r4∨r4

¬x6 ∨ x8∨r5∨r5 x6 ∨ ¬x8∨r6∨r6 x2 ∨ x4∨r7∨r7 ¬x4 ∨ x5∨r8∨r8

x7 ∨ x5∨r9∨r9 ¬x7 ∨ x5∨r10∨r10 ¬x5 ∨ x3∨r11∨r11 ¬x3∨r12∨r12∑12
i=1 ri ≤ 12

∑12
i=1 ri ≤ 12

∑12
i=1 ri ≤ 2

∑12
i=1 ri ≤ 1

Example CNF formula Relax all clauses; Set UB = 12 + 1 Formula is SAT; E.g. all xi = 0 and
r1 = r7 = r9 = 1 (i.e. cost = 3) Refine UB = 3 Formula is SAT; E.g. x1 = x2 = 1;
x3 = ... = x8 = 0 and r4 = r9 = 1 (i.e. cost = 2) Refine UB = 2 Formula is UNSAT; terminate
MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints

over all relaxation variables

All (possibly many)

soft clauses relaxed
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MaxSAT with iterative SAT solving – binary search

OPT

LB0 UB0m0= ⌊(LB0 + UB0)/2⌋LB0 UB0UB1LB1 = m0 − 1 m1LB2 UB2
m2mkUBk

Invariant: LBk ≤ UBk − 1

Require
∑

wi ri ≤ m0

Repeat

▶ If UNSAT, refine LB1 = m0, . . .
▶ Compute new mid value m1, . . .
▶ If SAT, refine UB3 = m2, . . .

Until LBk = UBk − 1

Worst-case # of iterations linear on instance size
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Branch&bound MaxSAT algorithm

[LMP’07]

Many techniques for computing lower bounds, i.e. for lower bounding the search
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Core-guided MaxSAT

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Goal: Do not relax all clauses
▶ Why?

⋆ Some clauses never relevant for computing MaxSAT solution
⋆ Simplify cardinality/PB constraints

How to relax clauses on demand?
▶ Relax clauses given computed unsatisfiable cores

⋆ Many alternative ways to instrument code-guided algorithms
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Fu&Malik’s (FM) core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1∨r9 ¬x1∨r2∨r10

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r11 ¬x7 ∨ x5∨r12 ¬x5 ∨ x3∨r5∨r13 ¬x3∨r6∨r14∑6
i=1 ri ≤ 1

∑14
i=7 ri ≤ 1

Example CNF formula Formula is UNSAT; OPT ≤ |φ| − 1; Get unsat core Add relaxation
variables and AtMost1 constraint Formula is (again) UNSAT; OPT ≤ |φ| − 2; Get unsat core
Add new relaxation variables and AtMost1 constraint Instance is now SAT MaxSAT solution is
|φ| − I = 12− 2 = 10

Only AtMost1

constraints used

Relaxed soft

clauses remain soft

Some clauses

not relaxed
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Another example

FS ≜ (x1) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x3) ∧ (¬x3) ∧ (x4 ∨ ¬x5) ∧ (¬x4 ∨ x5)
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MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

∑10
i=1 ri ≤ 2

Example CNF formula Formula is UNSAT; OPT ≤ |φ| − 1; Get unsat core Add relaxation
variables and AtMost1 constraint Formula is (again) UNSAT; OPT ≤ |φ| − 2; Get unsat core
Add new relaxation variables and AtMost1 constraint Instance is now SAT MaxSAT solution is
|φ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Some clauses

not relaxed
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Another example

FS ≜ (x1) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x3) ∧ (¬x3) ∧ (x4 ∨ ¬x5) ∧ (¬x4 ∨ x5)
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MHS approach for MaxSAT

Remark 1: The MaxSAT solution is a smallest MCS

Remark 2: Any MCS is a hitting set of all MUSes

Approach: [DB’11]

1 Let K be a set of unsatisfiable cores (or MUSes)
2 Find a minimum hitting set H of the set K of already computed cores (or MUSes)
3 Check satistisfability of F \ H
4 If satisfiable, then H is a smallest MCS; terminate and return H
5 Otherwise, compute core (or MUS) and add it to K
6 Loop from 2

Issue: worst-case number of iterations worst-case exponential on number of clauses

▶ But, quite effective in practice
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MHS approach for MaxSAT – example

c1 = x6 ∨ x2 ∨ A1A1 c2 = ¬x6 ∨ x2 ∨ A2A2 c3 = ¬x2 ∨ x1 ∨ A3A3 c4 = ¬x1 ∨ A4A4

c5 = ¬x6 ∨ x8 ∨ A5A5 c6 = x6 ∨ ¬x8 ∨ A6A6 c7 = x2 ∨ x4 ∨ A7A7 c8 = ¬x4 ∨ x5 ∨ A8A8

c9 = x7 ∨ x5 ∨ A9A9 c10 = ¬x7 ∨ x5 ∨ A10A10 c11 = ¬x5 ∨ x3 ∨ A11A11 c12 = ¬x3 ∨ A12A12

K = ∅

K = {{c1, c2, c3, c4}}

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

To every ci ∈ F , add a new literal Ai . Set Ai to true to relax ci , or to false to activate it

Find MHS of K: ∅
SAT(F \ ∅)? No

Core of F : {c1, c2, c3, c4}. Update K

Find MHS of K: E.g. {c1}
SAT(F \ {c1})? No

Core of F : {c9, c10, c11, c12}. Update K

Find MHS of K: E.g. {c1, c9}
SAT(F \ {c1, c9})? No

Core of F : {c3, c4, c7, c8, c11, c12}. Update K

Find MHS of K: E.g. {c4, c9}
SAT(F \ {c4, c9})? Yes

Terminate & return 2
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Core Extraction Using CDCL

Assign the activation literals at a special decision
level (-1)

CDCL fails when finding a contradiction at level 0

▶ The implication graph must involve some activation
literals

Do clause resolution until the cut contains only
activation literals

The resulting clause is a MUS of the original formula

Level Dec. Unit Prop.

−1

0

...

¬A1 ¬A3 ¬A7 ¬A9

∅

...

ā
b

c̄

d

ē

f̄

⊥

A4A1
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MAXHS: Pseudocode

Algorithm: MAXHS

K∅// The MUSs
σ ← ∅// The optimal model
while satisfiability ̸= SAT do

hs ← Find-MinCost-HittingSet(K);
(sat, κ, σ)← CDCL(F \ hs);
add κ to K;

end
return σ;

CDCL returns the tuple (sat, κ, σ) where:

▶ sat is in {SAT,UNSAT,UNKNOWN}
▶ κ is a MUS

▶ σ is a solution if =(SAT) = true
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Je recrute un postdoc!

▶ Planification des prises de vue et vidages d’une constellation de satellites d’observation (Projet JAPETUS –
PROMETHEE, CNES, CNRS, LEANSPACE)
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