

Algorithms for Computational Logic

Minimal Unsatisfiable Subformulas

Emmanuel Hebrard (adapted from) João Marques Silva

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

Outline

- **1** Inconsistent Problems
- **2** Defining MCSes & MSSes
- **3** Basic Algorithms
- **4** Advanced Algorithms
- **5** Basic MCS Algorithms
- **6** Duality Between MUSes and MCSes

LAAS CNRS		Outline
1 Inconsistent Problems		
2 Defining MCSes & MSSes		
 Basic Algorithms Deletion-Based Insertion-Based Dichotomic 		
Advanced AlgorithmsQuickXplain		
 Basic MCS Algorithms Linear Search Clause D 		
6 Duality Between MUSes and	MCSes	
LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Inconsistent Problems	3 / 3

Notation

39

- $\mathcal{A} \vDash \mathcal{B}$ iff any model of \mathcal{A} is a model of \mathcal{B}
 - $(x) \models (x \lor y)$
 - $(x \lor y) \land (\neg x \lor z) \vDash (y \lor z)$
- $\mathcal{F} \vDash \bot$ iff \mathcal{F} is unsatisfiable
 - \mathcal{F} is said to be inconsistent
- $\mathcal{F} \nvDash \bot$ iff \mathcal{F} is satisfiable

- Let \mathcal{F} be inconsistent, i.e. $\mathcal{F} \vDash \bot$
- $\mathcal{G} \subseteq \mathcal{F}$ is an explanation of \mathcal{F} being inconsistent if $\mathcal{G} \vDash \bot$
- Often we are interested in minimal or minimum explanations
- Example 1:

 $\mathcal{F} \triangleq (x_1) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_3 \lor \neg x_4) \land (\neg x_3 \lor x_4)$

• An explanation for \mathcal{F} being inconsistent is:

$$\mathcal{G} \triangleq (x_1) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$$

• Example 2:

```
\mathcal{F} \triangleq (\neg x_1) \land (\neg x_2) \land (x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (\neg x_3 \lor x_2)
```

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS An explanation for , being inconsistent is.	Inconsistent Problems	5 / 39
$\mathcal{G} riangle$	$(\neg x_1) \land (\neg x_2) \land (x_1 \lor x_2)$	

LAAS
CNRS

Analyzing inconsistent problems – relaxations

- Let \mathcal{F} be inconsistent, i.e. $\mathcal{F} \vDash \bot$
- $\mathcal{G} \subseteq \mathcal{F}$ is a relaxation of \mathcal{F} if $\mathcal{G} \nvDash \bot$
- Often we are interested in maximal or maximum relaxations
- Example:

 $\mathcal{F} \triangleq (x_1) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_3 \lor \neg x_4) \land (\neg x_3 \lor x_4)$

• A relaxation of \mathcal{F} is:

$$\mathcal{G} \triangleq (x_1) \land (\neg x_1 \lor x_2) \land (x_3 \lor \neg x_4) \land (\neg x_3 \lor x_4)$$

LAAS CNRS		Outline
1 Inconsistent Problems		
2 Defining MCSes & MSSes		
 Basic Algorithms Deletion-Based Insertion-Based Dichotomic 		
 Advanced Algorithms QuickXplain 		
 Basic MCS Algorithms Linear Search Clause D 		
6 Duality Between MUSes and M	CSes	
LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Defining MCSes & MSSes	7 / 39

LAAS CNRS

MUSes, MCSes & MSSes

• Given \mathcal{F} unsatisfiable, $\mathcal{M} \subseteq \mathcal{F}$ is a Minimal Unsatisfiable Subset (MUS) iff \mathcal{M} is unsatisfiable and $\forall_{c \in \mathcal{M}}, \mathcal{M} \setminus \{c\}$ is satisfiable

$$(\neg x_1 \lor \neg x_2) \land (x_1) \land (x_2) \land (\neg x_3 \lor \neg x_4) \land (x_3) \land (x_4) \land (x_5 \lor x_6)$$

$$(\neg x_1 \lor \neg x_2) \land (x_1) \land (x_2) \land (\neg x_3 \lor \neg x_4) \land (x_3) \land (x_4) \land (x_5 \lor x_6)$$

• $C \subseteq \mathcal{F}$ is a Minimal Correction Subset (MCS) iff $\mathcal{F} \setminus C$ is satisfiable and $\forall_{c \in C}, \mathcal{F} \setminus (C \setminus \{c\})$ is unsatisfiable

$$(\neg x_1 \lor \neg x_2) \land (x_1) \land (x_2) \land (\neg x_3 \lor \neg x_4) \land (x_3) \land (x_4) \land (x_5 \lor x_6)$$

- $S \subseteq \mathcal{F}$ is a Maximal Satisfiable Subset (MSS) iff S is satisfiable and $\forall_{c \in \mathcal{F} \setminus S}, S \cup \{c\}$ is unsatisfiable
 - $\blacktriangleright \ \mathcal{S} \subseteq \mathcal{F} \text{ is an MSS iff } \mathcal{C} = \mathcal{F} \setminus \mathcal{S} \text{ is an MCS}$

- Formula is unsatisfiable with satisfiable subformulas
- Can remove clauses such that remaining clauses are satisfiable
- Minimal Correction Subset (MCS):
 - Irreducible subformula such that the complement is satisfiable
 - \star MCSes are minimal sets

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Defining MCSes & MSSes	9 / 39

• E.g. for each $i = 1, \ldots, n$, pick (x_i)

$$(x_n) \qquad (\neg x_n)$$

- For each i = 1, ..., n either pick (x_i) or $(\neg x_i)$, i.e. 2 cases
- Thus, 2ⁿ MCSes

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Defining MCSes & MSSes	11 / 39
LAAS CNRS	Anot	ther example – find MCS
$(\neg x_1) \land (x_1$	$\lor z_1)$	
$(\neg y_1) \land (y_1)$	$(\neg z_1)$ $(\neg z_1 \lor \neg z_2 \lor \ldots \lor \neg z_1)$	
$(\neg x_n) \wedge (x_n)$	(z_1, z_2, \ldots, z_n)	()
$(\neg y_n) \wedge (y_n)$	$\vee z_n)$	

$$\begin{array}{l} (\neg x_1) \land (x_1 \lor z_1) \\ (\neg y_1) \land (y_1 \lor z_1) \\ \dots \\ (\neg z_1 \lor \neg z_2 \lor \dots \lor \neg z_n) \\ (\neg x_n) \land (x_n \lor z_n) \\ (\neg y_n) \land (y_n \lor z_n) \end{array}$$

- For each i = 1, ..., n either resolve away x_i or y_i , i.e. 2 cases
- Thus, 2ⁿ MUSes

AAS

CNRS

• But, there exist formulas with more MUSes. How?

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	13 / 39

Increasing the number of MUSes

$$(\neg x_1) \land (\neg x_2) \land \ldots \land (\neg x_r)$$

$$(x_1 \lor z_1) \land (x_2 \lor z_1) \land \ldots \land (x_r \lor z_1)$$

$$(x_1 \lor z_2) \land (x_2 \lor z_2) \land \ldots \land (x_r \lor z_2)$$

$$\ldots$$

$$(x_1 \lor z_n) \land (x_2 \lor z_n) \land \ldots \land (x_r \lor z_n)$$

$$(\neg z_1 \lor \neg z_2 \lor \ldots \lor \neg z_n)$$

- There are r^n MUSes
- Upper bound by Sperner's theorem: $C(m, \lfloor \frac{m}{2} \rfloor)$

LAAS CNRS		Outline
1 Inconsistent Problems		
2 Defining MCSes & MSSes		
 Basic Algorithms Deletion-Based Insertion-Based Dichotomic 		
Advanced AlgorithmsQuickXplain		
 Basic MCS Algorithms Linear Search Clause D 		
6 Duality Between MUSes and MCS	bes	
LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Basic Algorithms	15 / 39

Overview of query complexity results

[Siqueira&Puget'88; van Maaren&Wieringa'08]

[Chinneck&Dravnieks'91; Bakker et al.'93]

[MSL'11,BLMS'12]

[Lecoutre et al.'06]

[MSJB'13]

[Junker'01; Junker'04]

- Set \mathcal{R} with *m* elements and *k* the size of largest minimal subset
- Worst-case number of oracle calls:
 - ▶ Insertion-based: O(k m)
 - Deletion-based: $\mathcal{O}(m)$
 - Linear insertion: $\mathcal{O}(m)$
 - Dichotomic: $\mathcal{O}(k \log(m))$
 - QuickXplain: $\mathcal{O}(k + k \log(\frac{m}{k}))$ Progression: $\mathcal{O}(k \log(1 + \frac{m}{k}))$
- For MUS extraction:
 - Oracle calls correspond to testing unsatisfiability with SAT solver
 - ★ $p(\cdot) \triangleq \text{UNSAT}(\cdot)$

Input : Set \mathcal{R} Output: Minimal subset \mathcal{M} begin $\mathcal{M} \leftarrow \mathcal{R}$ foreach $c \in \mathcal{M}$ do $\begin{bmatrix} if UNSAT(\mathcal{M} \setminus \{c\}) \text{ then} \\ \\ \mathcal{M} \leftarrow \mathcal{M} \setminus \{c\} \end{bmatrix}$ // If UNSAT($\mathcal{M} \setminus \{c\}$), then $c \notin MUS$ Remove c from \mathcal{M} return \mathcal{M} // Final \mathcal{M} is minimal set end

• Number of predicate tests: $\mathcal{O}(m)$

[Chinneck&Dravnieks'91; Bakker et al.'93]

LAAS-CNRS	Basic Algorithms	17 / 39
/ Laboratoire d'analyse et d'architecture des systèmes du CNRS		11 / 00

LAAS	
CNRS	

Deletion –	MUS	exampl	e
------------	-----	--------	---

<i>c</i> ₁	<i>c</i> ₂	<i>C</i> ₃	<i>C</i> 4	<i>C</i> 5	<i>c</i> ₆	<i>C</i> ₇	<i>C</i> 8
$(x_1 \lor x_2)$	$(x_3 \lor x_4)$	$(\neg x_3 \lor \neg x_4)$	$(\neg x_1 \lor \neg x_2)$	(x_1)	(x_{5})	$(\neg x_5 \lor x_6)$	(x_2)
	\mathcal{M}	$\mathcal{M} \setminus \{c\}$	$UNSAT(\mathcal{M}\setminus$	$\{c\})$	Outo	ome	
	<i>C</i> ₁ <i>C</i> ₈	<i>c</i> ₂ <i>c</i> ₈	1		Dro	o <i>c</i> ₁	
	<i>c</i> ₂ <i>c</i> ₈	<i>C</i> ₃ <i>C</i> ₈	1		Dro	o <i>c</i> ₂	
	<i>c</i> ₃ <i>c</i> ₈	<i>C</i> ₄ <i>C</i> ₈	1		Dro	o <i>c</i> ₃	
	<i>C</i> ₄ <i>C</i> ₈	<i>C</i> ₅ <i>C</i> ₈	0		Kee	o <i>C</i> 4	
	<i>C</i> ₄ <i>C</i> ₈	<i>C</i> ₄ <i>C</i> ₆ <i>C</i> ₈	0		Kee	o <i>c</i> ₅	
	<i>C</i> ₄ <i>C</i> ₈	<i>C</i> ₄ <i>C</i> ₅ <i>C</i> ₇ <i>C</i> ₈	1		Dro	o <i>c</i> ₆	
	<i>C</i> ₄ <i>C</i> ₅ <i>C</i> ₇ <i>C</i> ₈	$C_4 C_5 C_8$	1		Dro	о <i>С</i> 7	
	<i>C</i> ₄ <i>C</i> ₅ <i>C</i> ₈	<i>C</i> ₄ <i>C</i> ₅	0		Kee	о <i>С</i> 8	

• MUS: $\{c_4, c_5, c_8\}$

AAS

CNRS

CNRS						Insertion –	MUS example
	<i>c</i> ₁	<i>c</i> ₂	C	<u>3</u>	<i>C</i> ₄ <i>C</i> ₅	<i>C</i> ₆ <i>C</i> ₇	<u><i>C</i>8</u>
	$(x_1 \lor x_2)$	$(x_3 \lor x_4)$	(¬ <i>x</i> ₃ ∖	$\sqrt{-x_4}$ (-	$ x_1 \vee \neg x_2) (x_1) $	(x_5) $(\neg x_5 \lor x_6)$	(x_2)
		. <i>R</i>	3	$\mathcal{M} \cup \mathcal{S}$	$UNSAT(\mathcal{M}\cup\mathcal{S})$	Outcome	
	Ø	<i>C</i> ₁ <i>C</i> ₈	Ø	Ø	0	_	
	Ø	<i>c</i> ₂ <i>c</i> ₈	c_1	<i>c</i> ₁	0	_	
	Ø	<i>c</i> ₃ <i>c</i> ₈	<i>c</i> ₁ <i>c</i> ₂	<i>c</i> ₁ <i>c</i> ₂	0	—	
	Ø	<i>C</i> ₄ <i>C</i> ₈	<i>c</i> ₁ <i>c</i> ₃	<i>c</i> ₁ <i>c</i> ₃	0	_	
	Ø	<i>C</i> ₅ <i>C</i> ₈	<i>c</i> ₁ <i>c</i> ₄	<i>C</i> ₁ <i>C</i> ₄	0	_	
	Ø	<i>c</i> ₆ <i>c</i> ₈	<i>c</i> ₁ <i>c</i> ₅	<i>C</i> ₁ <i>C</i> ₅	0	-	
	Ø	<i>C</i> ₇ <i>C</i> ₈	<i>c</i> ₁ <i>c</i> ₆	<i>c</i> ₁ <i>c</i> ₆	0	-	
	Ø	<i>C</i> 8	<i>c</i> ₁ <i>c</i> ₇	<i>C</i> ₁ <i>C</i> ₇	0	_	
	Ø	Ø	<i>c</i> ₁ <i>c</i> ₈	<i>C</i> ₁ <i>C</i> ₈	1	Add c_8 to ${\cal M}$	
	<i>C</i> 8	<i>C</i> ₁ <i>C</i> ₇	Ø	<i>C</i> 8	0	_	
	<i>C</i> 8	<i>C</i> ₂ <i>C</i> ₇	c_1	<i>C</i> ₁ <i>C</i> ₈	0	-	
LAAS-CNRS / Laboratoire d'analys	e et d'architecture d	es systèmes d <u>u CN</u>	IRS				20 / 3

LAAS CNRS

Insertion – MUS example (Cont'd)

21	<i>c</i> ₂	0	C ₃	<i>c</i> ₄ <i>c</i> ₅ <i>c</i>	C ₆ C ₇	<i>C</i> 8
/ x ₂)	$(x_3 \vee x_4)$	$(\neg x_3)$	$\vee \neg x_4$) ($\neg x$	$(x_1 \lor \neg x_2) (x_1) (x_2)$	$(\neg x_5 \lor x_6)$	(x_2)
\mathcal{M}	\mathcal{R}	S	$\mathcal{M}\cup\mathcal{S}$	$UNSAT(\mathcal{M}\cup\mathcal{S})$	Outcome	-
<i>C</i> 8	<i>C</i> ₃ <i>C</i> ₇	<i>c</i> ₁ <i>c</i> ₂	<i>C</i> ₁ <i>C</i> ₂ <i>C</i> ₈	0	_	-
<i>C</i> 8	<i>C</i> ₄ <i>C</i> ₇	<i>c</i> ₁ <i>c</i> ₃	<i>c</i> ₁ <i>c</i> ₃ <i>c</i> ₈	0	_	
<i>C</i> 8	<i>C</i> ₅ <i>C</i> ₇	<i>c</i> ₁ <i>c</i> ₄	<i>C</i> ₁ <i>C</i> ₄ <i>C</i> ₈	0	—	
<i>C</i> 8	<i>C</i> ₆ <i>C</i> ₇	<i>c</i> ₁ <i>c</i> ₅	<i>C</i> ₁ <i>C</i> ₅ <i>C</i> ₈	1	Add c_5 to ${\cal M}$	
<i>C</i> ₅ <i>C</i> ₈	<i>C</i> ₁ <i>C</i> ₄	Ø	<i>C</i> ₅ <i>C</i> ₈	0	_	
<i>C</i> ₅ <i>C</i> ₈	<i>c</i> ₂ <i>c</i> ₄	<i>c</i> ₁	<i>C</i> ₁ <i>C</i> ₅ <i>C</i> ₈	0	_	
<i>C</i> ₅ <i>C</i> ₈	<i>C</i> ₃ <i>C</i> ₄	<i>c</i> ₁ <i>c</i> ₂	<i>c</i> ₁ <i>c</i> ₂ <i>c</i> ₅ <i>c</i> ₈	0	—	
<i>C</i> ₅ <i>C</i> ₈	<i>C</i> 4	<i>c</i> ₁ <i>c</i> ₃	<i>C</i> ₁ <i>C</i> ₃ <i>C</i> ₅ <i>C</i> ₈	0	—	
<i>C</i> ₅ <i>C</i> ₈	Ø	<i>c</i> ₁ <i>c</i> ₄	$c_1c_5c_8$	1	Add c_4 to ${\cal M}$	

• MUS: $\{c_4, c_5, c_8\}$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

21 / 39

\mathcal{M}	$UNSAT(\mathcal{M})$	\mathcal{R}	C _{min}
Ø	0	<i>c</i> ₁ <i>c</i> ₈	<i>C</i> 8
<i>C</i> 8	0	<i>C</i> ₁ <i>C</i> ₇	<i>C</i> 5
<i>C</i> ₅ <i>C</i> ₈	0	<i>c</i> ₁ <i>c</i> ₄	<i>C</i> 4
<i>C</i> ₄ <i>C</i> ₅ <i>C</i> ₈	1	<i>c</i> ₁ <i>c</i> ₃	-

- MUS: $\{c_4, c_5, c_8\}$
- Note: additional predicate tests required for computing cmin

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Basic Algorithms	23 / 39

• Number of predicate tests: $O(k + k \log(\frac{m}{k}))$

[Junker'01; Junker'04]

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Advanced Algorithms	25 / 39

- Set \mathcal{R} with *m* elements, *k* the size of largest minimal subset, and *r* the size of the smallest minimal subset
- Worst-case number of oracle calls:
 - ► MaxSAT-based: $O(\log m)$
 - Linear search: $\mathcal{O}(m)$
 - Clause D: $\mathcal{O}(m-r)$
 - Dichotomic: $\mathcal{O}(k \log(m))$
 - FastDiag / QuickXplain: $\mathcal{O}(k + k \log(\frac{m}{k}))$
 - Progression: $\mathcal{O}(k \log(1 + \frac{m}{k}))$
- For MCS extraction:
 - Oracle calls correspond to testing satisfiability with SAT solver
 - ★ $p(\cdot) \triangleq SAT(\cdot)$

AAS-CNRS	
Laboratoire d'analyse et d'architecture des systèmes du CNRS	

Basic MCS Algorithms

LAAS CNRS

Basic linear search

[e.g. Bailey&Stuckey'05]

[MSHJPB'13]

[MSJB'13]

29 / 39

[Lecoutre et al.'06]

[Felfernig et al.'12]

- Let $S \subseteq \mathcal{F}$, such that $S \nvDash \bot$, initially $S = \emptyset$
- Let $C \subseteq \mathcal{F}$, such that $\forall_{c \in C} S \cup \{c\} \models \bot$, initially $C = \emptyset$
- At each iteration, analyze one clause $c \in \mathcal{F} \setminus (\mathcal{S} \cup \mathcal{C})$:
 - If $S \cup \{c\} \models \bot$, then add c to C, i.e. c is part of MCS
 - If $S \cup \{c\} \nvDash \bot$, then add c to S, i.e. c is part of MSS
- Number of calls to oracle: $\mathcal{O}(m)$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

$$(x_1) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_4) \land (\neg x_4 \lor x_3) \land (\neg x_4 \lor \neg x_3)$$

 $(x_1) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3)$

P	-13	-4	-1	_	
Ø	<i>c</i> ₁ <i>c</i> ₄	<i>C</i> 5	<i>C</i> ₁ <i>C</i> ₅	1	Update ${\cal S}$
Ø	<i>c</i> ₁ <i>c</i> ₅	<i>c</i> 6	<i>c</i> ₁ <i>c</i> ₆	1	Update ${\cal S}$
Ø	<i>c</i> ₁ <i>c</i> ₆	<i>C</i> 7	<i>C</i> ₁ <i>C</i> ₇	1	Update ${\cal S}$
Ø	<i>c</i> ₁ <i>c</i> ₇	<i>C</i> 8	<i>c</i> ₁ <i>c</i> ₈	0	$Update\ \mathcal{C}$
			Basic MCS A	loorithms	
			Basic MCS A	lgorithms	

• MCS: {*c*₈}

AAS

CNRS

• Example 1:

• Example 2:

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Basic MCS Algorithms

Additional examples

31 / 39

 $\mathcal{S} \cup \{c\}$ $SAT(\cdot)$ \mathcal{C} \mathcal{S} Outcome С Ø Ø Update \mathcal{S} *c*₁ 1 c_1 Ø Update \mathcal{S} 1 c_1 *C*₂ *c*₁*c*₂ Ø Update \mathcal{S} 1 *c*₁*c*₂ *C*₃ *c*₁..*c*₃ Ø Update SC1..C3 C1...C4 1 Сл S S

Linear search – MCS example

(**Obs:** *D* is not tautologous)

- Pick an assignment and let $S \subseteq F$ be the satisfied clauses and $U \subseteq F$ be the falsified clauses, with $F = S \cup U$
 - ► Claim: there are **no** complemented literals in U!
- Repeat:
 - Create clause $D = \bigcup_{l \in c, c \in U} I$
 - If $S \cup \{D\} \models \bot$, then \mathcal{U} is MCS
 - ★ Report MCS & terminate
 - If $S \cup \{D\} \nvDash \bot$, then add to S the satisfied clauses in \mathcal{U} , remove from \mathcal{U} the satisfied clauses and loop
- Number of calls to oracle: $\mathcal{O}(m-r)$

LAAS-CNRS	
/ Laboratoire d'analyse et d'architecture de	s systèmes du CNRS

Basic MCS Algorithms

33 / 39

(Why?)

(Why?)

LAAS CNRS

Clause *D* – MCS example

${\mathcal S}$	\mathcal{U}	D	$SAT(\cdot)$	Variables = 1
Ø	Ø		1	Ø
<i>C</i> ₃ <i>C</i> ₄ <i>C</i> ₇	$c_1 c_2 c_5 c_6 c_8$	$\{x_1,\ldots,x_5\}$	1	$\{x_1, x_3\}$
<i>C</i> ₁ <i>C</i> ₅ <i>C</i> ₇	<i>C</i> ₆ <i>C</i> ₈	$\{x_2, x_5\}$	1	$\{x_1, x_3, x_5\}$
<i>C</i> ₁ <i>C</i> ₇	<i>C</i> 8	$\{x_2\}$	0	Ø

• MCS: {*c*₈}

$$(x_1) \wedge (\neg x_1 \lor x_2) \wedge (\neg x_1 \lor \neg x_2) \wedge (x_4) \wedge (\neg x_4 \lor x_3) \wedge (\neg x_4 \lor \neg x_3)$$

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

AAS

CNRS

Basic MCS Algorithm

35 / 39

- Let \mathcal{S} be a finite set
- Let \mathcal{F} be a set of subsets of \mathcal{S} , $\mathcal{F} \subseteq 2^{\mathcal{S}}$
- A hitting set $\mathcal{H} \subseteq S$ is such that $\forall_{\mathcal{G} \in \mathcal{F}} \mathcal{H} \cap \mathcal{G} \neq \emptyset$
- \mathcal{H} is subset minimal (or minimal) if none of its subsets is a hitting set of \mathcal{F}
- \mathcal{H} is cardinality minimal (or of minimum size) if there are no hitting sets of \mathcal{F} with fewer elements
- An Example

$$\begin{split} \mathcal{S} &= \{1,2,3,4,5,6,7\} \\ \mathcal{F} &= \{\{1,2,3\},\{3,4,5\},\{5,6,7\}\} \\ \mathcal{H}_1 &= \{1,2,4,6,7\} \\ \mathcal{H}_2 &= \{2,4,6\} \\ \mathcal{H}_3 &= \{3,7\} \end{split}$$

LAAS-CNRS	
/ Laboratoire d'analyse et d'architecture des systèmes du CNR	S

Duality Between MUSes and MCS

37 / 39

MUSes vs. MCSes

- Claim: MUSes are minimal hitting sets of MCSes, and MCSes are minimal hitting sets of MUSes
- Example:

MUS	$\{\{c_1, c_2\}, \{c_3, c_4, c_5\}, \{c_3, c_6, c_7\}\}$
MCS	$\{\{c_1, c_3\}, \{c_2, c_3\}, \{c_1, c_4, c_6\}, \{c_1, c_4, c_7\}, \{c_1, c_5, c_6\}, \{c_1, c_5, c_7\}, \{c_2, c_4, c_6\}, \{c_2, c_4, c_7\}, \{c_2, c_5, c_6\}, \{c_2, c_5, c_7\}\}$

- Any correction set C must hit all unsatisfiable sets U. Why?
 - Otherwise, C would not hit any clause of some unsatisfiable set V, and so F \ C would be unsatisfiable since it would be contain V; a contradiction
- Any unsatisfiable set \mathcal{U} must hit all correction sets \mathcal{C} . Why?
 - ▶ Otherwise, U would not hit any clause of some correction set T, and so U would be satisfiable since F \ U would contain correction set T; a contradiction

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Duality Between MUSes and MCS

39 / 39