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Notation

A⊨ B iff any model of A is a model of B
▶ (x)⊨(x ∨ y)
▶ (x ∨ y) ∧ (¬x ∨ z)⊨(y ∨ z)

F ⊨ ⊥ iff F is unsatisfiable

▶ F is said to be inconsistent

F ⊭ ⊥ iff F is satisfiable
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Analyzing inconsistent problems – explanations

Let F be inconsistent, i.e. F ⊨ ⊥

G ⊆ F is an explanation of F being inconsistent if G ⊨ ⊥

Often we are interested in minimal or minimum explanations

Example 1:
F ≜ (x1) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x3 ∨ ¬x4) ∧ (¬x3 ∨ x4)

▶ An explanation for F being inconsistent is:

G ≜ (x1) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

Example 2:
F ≜ (¬x1) ∧ (¬x2) ∧ (x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (¬x3 ∨ x2)

▶ An explanation for F being inconsistent is:

G ≜ (¬x1) ∧ (¬x2) ∧ (x1 ∨ x2)
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Analyzing inconsistent problems – relaxations

Let F be inconsistent, i.e. F ⊨ ⊥

G ⊆ F is a relaxation of F if G ⊭ ⊥

Often we are interested in maximal or maximum relaxations

Example:
F ≜ (x1) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x3 ∨ ¬x4) ∧ (¬x3 ∨ x4)

▶ A relaxation of F is:
G ≜ (x1) ∧ (¬x1 ∨ x2) ∧ (x3 ∨ ¬x4) ∧ (¬x3 ∨ x4)
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MUSes, MCSes & MSSes

Given F unsatisfiable, M ⊆ F is a Minimal Unsatisfiable Subset (MUS) iff M is unsatisfiable and
∀c∈M,M\ {c} is satisfiable

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C is satisfiable and ∀c∈C ,F \ (C \ {c}) is unsatisfiable

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)

(¬x1 ∨ ¬x2) ∧ (x1) ∧ (x2)∧(¬x3 ∨ ¬x4) ∧ (x3) ∧ (x4) ∧ (x5 ∨ x6)S ⊆ F is a Maximal Satisfiable Subset (MSS) iff S is satisfiable and ∀c∈F\S ,S ∪ {c}) is unsatisfiable
▶ S ⊆ F is an MSS iff C = F \ S is an MCS
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Example – MCSes as minimal sets

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

Formula is unsatisfiable with satisfiable subformulas

Can remove clauses such that remaining clauses are satisfiable

Minimal Correction Subset (MCS):
▶ Irreducible subformula such that the complement is satisfiable

⋆ MCSes are minimal sets
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Another example – find MCS

(x1) (¬x1)
. . . . . .

(xn) (¬xn)

E.g. for each i = 1, . . . , n, pick (xi )
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How many MCSes?

(x1) (¬x1)
. . . . . .

(xn) (¬xn)

For each i = 1, . . . , n either pick (xi ) or (¬xi ), i.e. 2 cases

Thus, 2n MCSes
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Another example – find MCS

(¬x1) ∧ (x1 ∨ z1)

(¬y1) ∧ (y1 ∨ z1)

. . . (¬z1 ∨ ¬z2 ∨ . . . ∨ ¬zn)
(¬xn) ∧ (xn ∨ zn)

(¬yn) ∧ (yn ∨ zn)

E.g. remove (¬z1 ∨ ¬z2 ∨ . . . ∨ ¬zn)

Defining MCSes & MSSes 12 / 39



How many MUSes?

(¬x1) ∧ (x1 ∨ z1)

(¬y1) ∧ (y1 ∨ z1)

. . . (¬z1 ∨ ¬z2 ∨ . . . ∨ ¬zn)
(¬xn) ∧ (xn ∨ zn)

(¬yn) ∧ (yn ∨ zn)

For each i = 1, . . . , n either resolve away xi or yi , i.e. 2 cases

Thus, 2n MUSes

But, there exist formulas with more MUSes. How?
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Increasing the number of MUSes

(¬x1) ∧ (¬x2) ∧ . . . ∧ (¬xr )
(x1 ∨ z1) ∧ (x2 ∨ z1) ∧ . . . ∧ (xr ∨ z1)

(x1 ∨ z2) ∧ (x2 ∨ z2) ∧ . . . ∧ (xr ∨ z2)

. . .

(x1 ∨ zn) ∧ (x2 ∨ zn) ∧ . . . ∧ (xr ∨ zn)

(¬z1 ∨ ¬z2 ∨ . . . ∨ ¬zn)

There are rn MUSes

Upper bound by Sperner’s theorem: C(m, ⌊m
2
⌋)
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Overview of query complexity results

Set R with m elements and k the size of largest minimal subset

Worst-case number of oracle calls:

▶ Insertion-based: O(k m) [Siqueira&Puget’88; van Maaren&Wieringa’08]

▶ Deletion-based: O(m) [Chinneck&Dravnieks’91; Bakker et al.’93]

▶ Linear insertion: O(m) [MSL’11,BLMS’12]

▶ Dichotomic: O(k log(m)) [Lecoutre et al.’06]

▶ QuickXplain: O(k + k log(m
k
)) [Junker’01; Junker’04]

▶ Progression: O(k log(1 + m
k
)) [MSJB’13]

For MUS extraction:
▶ Oracle calls correspond to testing unsatisfiability with SAT solver

⋆ p(·) ≜ UNSAT(·)
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Deletion-based algorithm

Input : Set R
Output: Minimal subsetM
begin
M←R
foreach c ∈M do

if UNSAT (M\ {c}) then
M←M\ {c} // If UNSAT (M\ {c}), then c ̸∈ MUS Remove c fromM

returnM // FinalM is minimal set

end

Number of predicate tests: O(m) [Chinneck&Dravnieks’91; Bakker et al.’93]
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Deletion – MUS example

c1 c2 c3 c4 c5 c6 c7 c8
(x1 ∨ x2) (x3 ∨ x4) (¬x3 ∨ ¬x4) (¬x1 ∨ ¬x2) (x1) (x5) (¬x5 ∨ x6) (x2)

M M\ {c} UNSAT(M\ {c}) Outcome

c1..c8 c2..c8 1 Drop c1

c2..c8 c3..c8 1 Drop c2

c3..c8 c4..c8 1 Drop c3

c4..c8 c5..c8 0 Keep c4

c4..c8 c4c6..c8 0 Keep c5

c4..c8 c4c5c7c8 1 Drop c6

c4c5c7c8 c4c5c8 1 Drop c7

c4c5c8 c4c5 0 Keep c8

MUS: {c4, c5, c8}
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Insertion-based MUS computation

Input : Set R
Output: Minimal subsetM
begin
M← ∅
while R ≠ ∅ do
S ← ∅ // Subset of R
cr ← ∅
while ¬UNSAT (M∪S) do

ci ← SelectRemoveElement(R)
S ← S ∪ {ci}
cr ← ci

M←M∪ {cr} // cr is in minimal subsetcr is transition element
R ← S \ {cr}

returnM // FinalM is minimal subset

end

Number of predicate tests: O(k m) [Siqueira&Puget’88; van Maaren&Wieringa’08]
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Insertion – MUS example

c1 c2 c3 c4 c5 c6 c7 c8
(x1 ∨ x2) (x3 ∨ x4) (¬x3 ∨ ¬x4) (¬x1 ∨ ¬x2) (x1) (x5) (¬x5 ∨ x6) (x2)

M R S M∪ S UNSAT(M∪S) Outcome
∅ c1..c8 ∅ ∅ 0 –

∅ c2..c8 c1 c1 0 –

∅ c3..c8 c1c2 c1c2 0 –

∅ c4..c8 c1..c3 c1..c3 0 –

∅ c5..c8 c1..c4 c1..c4 0 –

∅ c6..c8 c1..c5 c1..c5 0 –

∅ c7c8 c1..c6 c1..c6 0 –

∅ c8 c1..c7 c1..c7 0 –

∅ ∅ c1..c8 c1..c8 1 Add c8 toM
c8 c1..c7 ∅ c8 0 –

c8 c2..c7 c1 c1c8 0 –

...
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Insertion – MUS example (Cont’d)

c1 c2 c3 c4 c5 c6 c7 c8
(x1 ∨ x2) (x3 ∨ x4) (¬x3 ∨ ¬x4) (¬x1 ∨ ¬x2) (x1) (x5) (¬x5 ∨ x6) (x2)

M R S M∪ S UNSAT(M∪S) Outcome
c8 c3..c7 c1c2 c1c2c8 0 –

c8 c4..c7 c1..c3 c1..c3c8 0 –

c8 c5..c7 c1..c4 c1..c4c8 0 –

c8 c6..c7 c1..c5 c1..c5c8 1 Add c5 toM
c5c8 c1..c4 ∅ c5c8 0 –

c5c8 c2..c4 c1 c1c5c8 0 –

c5c8 c3..c4 c1c2 c1c2c5c8 0 –

c5c8 c4 c1..c3 c1..c3c5c8 0 –

c5c8 ∅ c1..c4 c1..c5c8 1 Add c4 toM
...

MUS: {c4, c5, c8}
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Dichotomic

Input : Set R = {c1, . . . , cm}
Output: Minimal subsetM
begin
M← ∅
while ¬UNSAT (M) do

min← 1
max← |R|
while min ̸= max do

mid = ⌊(min+ max)/2⌋ // Execute binary search
S ← {c1, . . . , cmid} // Extract sub-sequence of R
if ¬UNSAT (M∪S) then

min← mid+ 1
else

max← mid

M←M∪ {cmin} // cmin is in minimal subsetcmin is transition element
R ← {c1, . . . , cmin−1}

returnM // FinalM is minimal subset
end

Number of predicate tests: O(k logm) [Lecoutre et al.’06]
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Dichotomic – MUS example

c1 c2 c3 c4 c5 c6 c7 c8
(x1 ∨ x2) (x3 ∨ x4) (¬x3 ∨ ¬x4) (¬x1 ∨ ¬x2) (x1) (x5) (¬x5 ∨ x6) (x2)

M UNSAT(M) R cmin

∅ 0 c1..c8 c8

c8 0 c1..c7 c5

c5c8 0 c1..c4 c4

c4c5c8 1 c1..c3 –

MUS: {c4, c5, c8}
Note: additional predicate tests required for computing cmin
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Outline

1 Inconsistent Problems

2 Defining MCSes & MSSes

3 Basic Algorithms
Deletion-Based
Insertion-Based
Dichotomic

4 Advanced Algorithms
QuickXplain

5 Basic MCS Algorithms
Linear Search
Clause D

6 Duality Between MUSes and MCSes

Advanced Algorithms 24 / 39



QuickXplain

Input: B; T ; has set
Output: Elements in the minimal set

if has set ∧ p(B) then
return ∅

if |T | = 1 then
return T

m← ⌊ |T |
2 ⌋

(T1, T2)← (T1..m, Tm+1..|T |)

M2 ← QuickXplain(B ∪ T1, T2, |T1| > 0)

M1 ← QuickXplain(B ∪M2, T1, |M2| > 0)

returnM1 ∪M2

Number of predicate tests: O(k + k log(m
k
)) [Junker’01; Junker’04]
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QuickXplain – MUS example

c1 c2 c3 c4 c5 c6 c7 c8
(x1 ∨ x2) (x3 ∨ x4) (¬x3 ∨ ¬x4) (¬x1 ∨ ¬x2) (x1) (x5) (¬x5 ∨ x6) (x2)

B = ∅
T = c1..c8

B = c1..c4
T = c5..c8

B = c1..c6
T = c7c8

B = c1..c7
T = c8

Ret c8

B = c1..c6c8
T = c7

Ret ∅

B = c1..c4c8
T = c5c6

B = c1..c5c8
T = c6

Ret ∅

B = c1..c4c8
T = c5

Ret c5

. . .
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QuickXplain – MUS example (Cont’d)

c1 c2 c3 c4 c5 c6 c7 c8
(x1 ∨ x2) (x3 ∨ x4) (¬x3 ∨ ¬x4) (¬x1 ∨ ¬x2) (x1) (x5) (¬x5 ∨ x6) (x2)

B = ∅
T = c1..c8

. . . B = c5c8
T = c1..c4

B = c1c2c5c8
T = c3c4

B = c1..c3c5c8
T = c4

Ret c4

B = c1c2c4c5c8
T = c3

Ret ∅

B = c4c5c8
T = c1c2

Ret ∅
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Overview of query complexity results

Set R with m elements, k the size of largest minimal subset, and r the size of the smallest minimal subset

Worst-case number of oracle calls:

▶ MaxSAT-based: O(logm)
▶ Linear search: O(m) [e.g. Bailey&Stuckey’05]

▶ Clause D: O(m − r) [MSHJPB’13]

▶ Dichotomic: O(k log(m)) [Lecoutre et al.’06]

▶ FastDiag / QuickXplain: O(k + k log(m
k
)) [Felfernig et al.’12]

▶ Progression: O(k log(1 + m
k
)) [MSJB’13]

For MCS extraction:
▶ Oracle calls correspond to testing satisfiability with SAT solver

⋆ p(·) ≜ SAT(·)
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Basic linear search

Let S ⊆ F , such that S ⊭ ⊥, initially S = ∅

Let C ⊆ F , such that ∀c∈C S ∪ {c}⊨ ⊥, initially C = ∅

At each iteration, analyze one clause c ∈ F \ (S ∪ C):
▶ If S ∪ {c}⊨ ⊥, then add c to C, i.e. c is part of MCS
▶ If S ∪ {c}⊭ ⊥, then add c to S, i.e. c is part of MSS

Number of calls to oracle: O(m)
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Linear search – MCS example

c1 c2 c3 c4 c5 c6 c7 c8
(x1 ∨ x2) (x3 ∨ x4) (¬x3 ∨ ¬x4) (¬x1 ∨ ¬x2) (x1) (x5) (¬x5 ∨ x6) (x2)

C S c S ∪ {c} SAT(·) Outcome

∅ ∅ c1 c1 1 Update S
∅ c1 c2 c1c2 1 Update S
∅ c1c2 c3 c1..c3 1 Update S
∅ c1..c3 c4 c1..c4 1 Update S
∅ c1..c4 c5 c1..c5 1 Update S
∅ c1..c5 c6 c1..c6 1 Update S
∅ c1..c6 c7 c1..c7 1 Update S
∅ c1..c7 c8 c1..c8 0 Update C

MCS: {c8}
Basic MCS Algorithms 31 / 39

Additional examples

Example 1:
(x1) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x1 ∨ ¬x3)

Example 2:
(x1) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x4) ∧ (¬x4 ∨ x3) ∧ (¬x4 ∨ ¬x3)

Basic MCS Algorithms 32 / 39



Clause D algorithm

Pick an assignment and let S ⊆ F be the satisfied clauses and U ⊆ F be the falsified clauses, with
F = S ∪ U
▶ Claim: there are no complemented literals in U! (Why?)

Repeat:

▶ Create clause D = ∪l∈c,c∈U l (Obs: D is not tautologous)
▶ If S ∪ {D}⊨ ⊥, then U is MCS (Why?)

⋆ Report MCS & terminate

▶ If S ∪ {D}⊭ ⊥, then add to S the satisfied clauses in U , remove from U the satisfied clauses and loop

Number of calls to oracle: O(m − r)
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Clause D – MCS example

c1 c2 c3 c4 c5 c6 c7 c8
(x1 ∨ x2) (x3 ∨ x4) (¬x3 ∨ ¬x4) (¬x1 ∨ ¬x2) (x1) (x5) (¬x5 ∨ x6) (x2)

S U D SAT(·) Variables = 1

∅ ∅ — 1 ∅
c3c4c7 c1c2c5c6c8 {x1, . . . , x5} 1 {x1, x3}
c1..c5c7 c6c8 {x2, x5} 1 {x1, x3, x5}
c1..c7 c8 {x2} 0 ∅

MCS: {c8}
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Additional examples

Example 1:
(x1) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x1 ∨ ¬x3)

Example 2:
(x1) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x4) ∧ (¬x4 ∨ x3) ∧ (¬x4 ∨ ¬x3)

Basic MCS Algorithms 35 / 39
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Hitting sets

Let S be a finite set

Let F be a set of subsets of S, F ⊆ 2S

A hitting set H ⊆ S is such that ∀G∈F H ∩ G ≠ ∅

H is subset minimal (or minimal) if none of its subsets is a hitting set of F

H is cardinality minimal (or of minimum size) if there are no hitting sets of F with fewer elements

An Example
S = {1, 2, 3, 4, 5, 6, 7}
F = {{1, 2, 3}, {3, 4, 5}, {5, 6, 7}}
H1 = {1, 2, 4, 6, 7}
H2 = {2, 4, 6}
H3 = {3, 7}
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MUSes vs. MCSes

Claim:
MUSes are minimal hitting sets of MCSes, and
MCSes are minimal hitting sets of MUSes

Example:

c1 c2 c3 c4 c5 c6 c7
(x1) (¬x1) (¬x2) (x2 ∨ x3) (x2 ∨ ¬x3) (x2 ∨ x4) (x2 ∨ ¬x4)

MUS {{c1, c2}, {c3, c4, c5}, {c3, c6, c7}}

MCS {{c1, c3}, {c2, c3}, {c1, c4, c6}, {c1, c4, c7}, {c1, c5, c6},
{c1, c5, c7}, {c2, c4, c6}, {c2, c4, c7}, {c2, c5, c6}, {c2, c5, c7}}
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MUSes vs. MCSes – intuition

Any correction set C must hit all unsatisfiable sets U . Why?

▶ Otherwise, C would not hit any clause of some unsatisfiable set V, and so F \ C would be unsatisfiable since it
would be contain V; a contradiction

Any unsatisfiable set U must hit all correction sets C. Why?

▶ Otherwise, U would not hit any clause of some correction set T , and so U would be satisfiable since F \ U would
contain correction set T ; a contradiction
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