
Algorithms for Computational Logic
Overview of Satisfiability Modulo Theories

Emmanuel Hebrard (adapted from) João Marques Silva

1 / 25

Outline

1 What is SMT?

2 / 25

Outline

Motivation

1 What is SMT?
Some use cases
Example: Encoding a scheduling problem
Example: Encoding symbolic execution
SMT basics
Difference and similarties with Hybrid SAT/CP

What is SMT? 3 / 25

What is SMT?

Automate reasoning in (fragments of) first-order logic (FOL)

SAT Theory
Solvers SMT+ =

Equality+UF
Arithmetic
etc.

Problem representation in propositional logic (PL):
▶ Positive: Efficient (in practice) SAT algorithms
▶ Negative: Expresiveness via CNF encodings

PL + domain-specific reasoning
▶ Positive: Improved expressiveness
▶ Negative: Less efficient than SAT

Note: Standard definitions of FOL apply (more later)

What is SMT? 4 / 25

An example

All variables integer

Solve:

((x4 − x2 ≤ 3) ∨ (x4 − x3 ≥ 5)) ∧ (x4 − x3 ≤ 6)∧
(x1 − x2 ≤ −1) ∧ (x1 − x3 ≤ −2) ∧ (x1 − x4 ≤ −1) ∧ (x2 − x1 ≤ 2)∧
(x3 − x2 ≤ −1) ∧ ((x3 − x4 ≤ −2) ∨ (x4 − x3 ≥ 2))

Integer difference logic (with Boolean structure)

Unsatisfiable (Why?)

How to solve formulas like the above?

What is SMT? 5 / 25

Another example

Let ti,j be integer variables

Solve:

(t1,1 ≥ 0) ∧ (t1,2 ≥ t1,1 + 2) ∧ (t1,2 + 1 ≤ 8)∧
(t2,1 ≥ 0) ∧ (t2,2 ≥ t1,1 + 3) ∧ (t2,2 + 1 ≤ 8)∧
(t3,1 ≥ 0) ∧ (t3,2 ≥ t1,1 + 2) ∧ (t3,2 + 3 ≤ 8)∧
((t1,1 ≥ t2,1 + 3) ∨ (t2,1 ≥ t1,1 + 2))∧
((t1,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t1,1 + 2))∧
((t2,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t2,1 + 3))∧
((t1,2 ≥ t2,2 + 1) ∨ (t2,2 ≥ t1,2 + 1))∧
((t1,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t1,2 + 1))∧
((t2,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t2,2 + 1))

Another example of integer difference logic (with Boolean structure)

Satisfiable, with model: t1,1 = 5; t1,2 = 7; t2,1 = 2; t2,2 = 6; t3,1 = 0; t3,2 = 7;

How to solve formulas like the above?

What is SMT? 6 / 25

A scheduling example

Standard job-shop scheduling formulation: [Moura&Bjorner’11]

▶ n jobs, each composed of m tasks to be performed consecutively on m machines
⋆ di,j : duration of task j for job i

▶ Types of constraints:
⋆ Precedence: between two tasks in the same job
⋆ Resource: No two different tasks requiring the same machine can execute simultaneously
⋆ All jobs must terminate by a time limit max

▶ An example:

di,j Machine 1 Machine 2
Job 1 2 1
Job 2 3 1
Job 3 2 3

with max = 8

What is SMT? 7 / 25

A scheduling example (Cont.)

An SMT model for job-shop scheduling:
▶ ti,j : start time for task j of job i
▶ Example:

di,j Machine 1 Machine 2
Job 1 2 1
Job 2 3 1
Job 3 2 3

with max = 8

▶ Formulation:
(t1,1 ≥ 0) ∧ (t1,2 ≥ t1,1 + 2) ∧ (t1,2 + 1 ≤ 8)∧
(t2,1 ≥ 0) ∧ (t2,2 ≥ t1,1 + 3) ∧ (t2,2 + 1 ≤ 8)∧
(t3,1 ≥ 0) ∧ (t3,2 ≥ t1,1 + 2) ∧ (t3,2 + 3 ≤ 8)∧
((t1,1 ≥ t2,1 + 3) ∨ (t2,1 ≥ t1,1 + 2))∧
((t1,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t1,1 + 2))∧
((t2,1 ≥ t3,1 + 2) ∨ (t3,1 ≥ t2,1 + 3))∧
((t1,2 ≥ t2,2 + 1) ∨ (t2,2 ≥ t1,2 + 1))∧
((t1,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t1,2 + 1))∧
((t2,2 ≥ t3,2 + 3) ∨ (t3,2 ≥ t2,2 + 1))

▶ Integer difference logic with Boolean structure
⋆ Model: t1,1 = 5; t1,2 = 7; t2,1 = 2; t2,2 = 6; t3,1 = 0; t3,2 = 7;

What is SMT? 8 / 25

Software testing with symbolic execution

Example C program: [E.g. Moura&Bjorner’11]

i n t GCD (i n t x , i n t y) {
whi le (t r u e) {

i n t m = x % y ;
i f (m = = 0) re tu rn y ;
x = y ;
y = m;

}
}

Can the while loop test be executed twice?

▶ If so, which inputs allow this to happen?

What is SMT? 9 / 25

Software testing with symbolic execution (Cont.)

Problem formulation as SMT formula:

SSA Program

i n t GCD (i n t x0 , i n t y0) {
i n t m0 = x0 % y0 ;
a s s e r t (m0 != 0) ;
i n t x1 = y0 ;
i n t y1 = m0;
i n t m1 = x1 % y1 ;
a s s e r t (m1 = 0) ;

}

Path Formula in SMT

(m0 = x0% y0) ∧
¬(m0 = 0) ∧
(x1 = y0) ∧
(y1 = m0) ∧
(m1 = x1% y0) ∧
(m1 = 0)

Note: SSA denotes static single assignment form

What is SMT? 10 / 25

Software testing with symbolic execution (Cont.)

Problem formulation as SMT formula:

C Program

i n t GCD (i n t x , i n t y) {
whi le (t r u e) {

i n t m = x % y ;
i f (m = = 0) re tu rn y ;
x = y ;
y = m;

}
}

Solution

Model:
x0 = 2; y0 = 4;m0 = 2;
x1 = 4; y1 = 2;m1 = 0;

Function call: GCD(2,4)

Recall: This testing approach is known as dynamic symbolic execution

▶ Example tools: CUTE, Klee, DART, SAGE, Pex, Yogi

What is SMT? 11 / 25

Example Theories – EUF

Equality with Uninterpreted Functions (EUF)

Is this formula satisfiable?

[a× (f (b) + f (c)) = d] ∧ [b × (f (a) + f (c)) ̸= d] ∧ [a = b]

▶ Formula is unsatisfiable

And this formula?
[h(a, g(f (b), f (c))) = d] ∧ [h(b, g(f (a), f (c))) ̸= d] ∧ [a = b]

▶ Formula is also unsatisfiable

Goal: Abstract non-supported operations (functions)

▶ E.g. multiplication; ALUs in circuits; etc.

What is SMT? 12 / 25

Example Theories – Arithmetic

Wide range of applications

Variables are either integers or reals

Decidable, but fairly high complexity

Fragments can be solved with more efficient methods
▶ Bounds

⋆ x ▷◁ k, ▷◁∈ {<,>,≤,≥,=}
▶ Difference Logic

⋆ x − y ▷◁ k, ▷◁∈ {<,>,≤,≥,=}
▶ UTVPI (Unit Two-Variable Per Inequality)

⋆ ±x ± y ▷◁ k, ▷◁∈ {<,>,≤,≥,=}
▶ Linear Arithmetic

⋆ ∑
ai xi ▷◁ k, ▷◁∈ {<,>,≤,≥,=}

▶ Non-Linear Arithmetic
⋆ E.g. 3 x y − 4 x2 z − 4 y ≤ 10

What is SMT? 13 / 25

Other Theories

Equality with Uninterpreted Functions (EUF)

(Restricted) (linear/non-linear) arithmetic over the integers / reals

Bit vectors

Arrays

Pointer logic

Quantified fragments

What is SMT? 14 / 25

Integer difference logic

Integer variables

Conjunction of linear inequalities of the form xi − xj ≤ k

Algorithm:

▶ Add edge between xj and xi with weight k, for inequality xi − xj ≤ k

▶ Add additional source vertex x0

▶ Add edge from x0 to xi , for each other vertex xi

▶ Use Bellman-Ford algorithm to check for negative cycles

⋆ Negative cycle: Elimination of variables in (some) inequalities yields 0 ≤ −k, k > 0

⋆ Note: More efficient algorithms exist

What is SMT? 15 / 25

Integer difference logic (Cont.)

(x4 − x2 ≤ 3) ∧ (x4 − x3 ≤ 6) ∧ (x1 − x2 ≤ −1)∧
(x1 − x3 ≤ −2) ∧ (x1 − x4 ≤ −1) ∧ (x3 − x2 ≤ −1)∧
(x3 − x4 ≤ −2)

x0

x1

x3

x2

x4

0

0

0

0

−1

−1

3−2

6

−1

−2

Satisfiable:

x1 = −4
x2 = 0
x3 = −2
x4 = 0

What is SMT? 16 / 25

Integer difference logic (Cont.)

(x4 − x2 ≤ 3) ∧ (x4 − x3 ≤ 6) ∧ (x1 − x2 ≤ −1)∧
(x1 − x3 ≤ −2) ∧ (x1 − x4 ≤ −1) ∧ (x2 − x1 ≤ 2)∧
(x3 − x2 ≤ −1) ∧ (x3 − x4 ≤ −2)

x0

x1

x3

x2

x4

0

0

0

0

2

−1

−1

3−2

6

−1

−2

Unsatisfiable

What is SMT? 17 / 25

Algorithms for SMT

Eager approaches

▶ Encode problem to CNF and solve with SAT solver

Lazy approaches

▶ Embed SAT solver with theory solver(s)

What is SMT? 18 / 25

Eager Approaches

Encode each theory to CNF

▶ Integer variables encoded with Boolean variables

▶ Encode AtMostk, AtLeastk, and pseudo-Boolean constraints to CNF

▶ Recall: Can encode arbitrary constraints to CNF

▶ Function/predicate symbols replaced by constants

⋆ E.g. replace f (a), f (b), f (c) with A, B, C

⋆ Add clauses:

a = b → A = B
a = c → A = C
b = c → B = C

Solve CNF formula with SAT solver

What is SMT? 19 / 25

Lazy approaches – example

Example SMT formula:
g(a) = c ∧ (f (g(a)) ̸= f (c) ∨ g(a) = d)) ∧ c ̸= d

Represent Boolean structure as CNF formula:

(x) ∧ (¬y ∨ z) ∧ (¬w)

Interaction between SAT solver & theory solver (EUF):

SAT Outcome Model/Core EUF Outcome Explanation clause (sent to SAT solver)

SAT {x ,¬y ,¬w} UNSAT (¬x ∨ y)

SAT {x , y , z,¬w} UNSAT (¬x ∨ ¬z ∨ w)

UNSAT (x) ∧ (¬y ∨ z) ∧ (¬x ∨ y) ∧ (¬w) ∧ (¬x ∨ ¬z ∨ w)

What is SMT? 20 / 25

Lazy approaches – another example

Example SMT formula:

((x4 − x2 ≤ 3) ∨ (x4 − x3 ≥ 5)) ∧ (x4 − x3 ≤ 6)∧
(x1 − x2 ≤ −1) ∧ (x1 − x3 ≤ −2) ∧ (x1 − x4 ≤ −1) ∧ (x2 − x1 ≤ 2)∧
(x3 − x2 ≤ −1) ∧ ((x3 − x4 ≤ −2) ∨ (x4 − x3 ≥ 2))

Represent Boolean structure as CNF formula:

(a ∨ b) ∧ (c) ∧ (d) ∧ (e) ∧ (f) ∧ (g) ∧ (h) ∧ (i ∨ j)

Interaction between SAT solver & theory solver (IDL):

SAT
Outcome

Model/Core IDL Outcome Explanation clause
(sent to SAT solver)

SAT {a, c , . . . , h, i} UNSAT (¬e ∨ ¬g ∨ ¬h)

UNSAT
(e) ∧ (g) ∧ (h) ∧ (¬e ∨ ¬g ∨ ¬h)

What is SMT? 21 / 25

Lazy approaches – remarks

Why lazy?

▶ Theory solver called as needed, to check T-consistency

Key properties:

▶ Very flexible organization

▶ Modular implementation

⋆ Easy to add theory solvers

▶ Currently, the most efficient algorithms

▶ Clear separation between Boolean and theory domains

▶ Theory information unable to guide search

Widely used by modern SMT solvers

▶ Z3, Yices, OpenSMT, MathSAT, CVC, Barcelogic, etc.

What is SMT? 22 / 25

Lazy Approaches – Key Techniques

Key techniques in all efficient SMT solvers:

▶ Check T-consistency of partial assignments

▶ Given T-inconsistent assignment M, compute M′ ⊆ M and add ¬M′ as a clause

▶ Given T-inconsistent assignment, backtrack to where assignment is T-consistent

What is SMT? 23 / 25

DPLL(T)

What is DPLL(T)?

DPLL(T) = DPLL(X) + T -Solver

DPLL(X)

▶ SAT solver
▶ Cannot use: pure literals

T -Solver:

▶ Checks T -consistency of conjunctions of literals
▶ Performs theory propagation
▶ Computes explanations of inconsistency
▶ Note: T -propagation should be incremental and backtrackable

What is SMT? 24 / 25

SMT vs. Hybrid SAT/CP

Both methods combine dedicated algorithm (Theories / Propagators)

The difference is subtle: a propagator could embed a Theory solver

▶ They perform the same tasks (propagation, inconsistency detection, explanation)

▶ But propagators are tied to CSP domains, and theories are difficult to combine

Advantages of SMT: Theory domains can be open or even infinite (new literals can be added lazily)

▶ May allow a stronger reasoning

Advantages of CP: Propagators can be combined, theories cannot (as easily)

▶ Interesting applications require solving formulas involving multiple theories

What is SMT? 25 / 25

	Motivation
	What is SMT?
	Some use cases
	Example: Encoding a scheduling problem
	Example: Encoding symbolic execution
	SMT basics
	Difference and similarties with Hybrid SAT/CP

