

Algorithms for Computational Logic

Overview of Satisfiability Modulo Theories

Emmanuel Hebrard (adapted from) João Marques Silva

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Outline

1 What is SMT?

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Motivation

1 What is SMT?

- Some use cases
- Example: Encoding a scheduling problem
- Example: Encoding symbolic execution
- SMT basics
- Difference and similarties with Hybrid SAT/CP

- All variables integer
- Solve:

$$egin{aligned} &((x_4-x_2\leq 3)ee(x_4-x_3\geq 5))\wedge(x_4-x_3\leq 6)\wedge\ &(x_1-x_2\leq -1)\wedge(x_1-x_3\leq -2)\wedge(x_1-x_4\leq -1)\wedge(x_2-x_1\leq 2)\wedge\ &(x_3-x_2\leq -1)\wedge((x_3-x_4\leq -2)ee(x_4-x_3\geq 2)) \end{aligned}$$

- Integer difference logic (with Boolean structure)
- Unsatisfiable (Why?)
- How to solve formulas like the above?

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	What is SMT?	5 / 25

Another example

- Let $t_{i,j}$ be integer variables
- Solve:

$$egin{aligned} (t_{1,1} \geq 0) \land (t_{1,2} \geq t_{1,1}+2) \land (t_{1,2}+1 \leq 8) \land \ (t_{2,1} \geq 0) \land (t_{2,2} \geq t_{1,1}+3) \land (t_{2,2}+1 \leq 8) \land \ (t_{3,1} \geq 0) \land (t_{3,2} \geq t_{1,1}+2) \land (t_{3,2}+3 \leq 8) \land \ ((t_{1,1} \geq t_{2,1}+3) \lor (t_{2,1} \geq t_{1,1}+2)) \land \ ((t_{1,1} \geq t_{3,1}+2) \lor (t_{3,1} \geq t_{1,1}+2)) \land \ ((t_{2,1} \geq t_{3,1}+2) \lor (t_{3,1} \geq t_{2,1}+3)) \land \ ((t_{1,2} \geq t_{3,2}+1) \lor (t_{2,2} \geq t_{1,2}+1)) \land \ ((t_{1,2} \geq t_{3,2}+3) \lor (t_{3,2} \geq t_{1,2}+1)) \land \ ((t_{2,2} \geq t_{3,2}+3) \lor (t_{3,2} \geq t_{2,2}+1)) \land \end{aligned}$$

- Another example of integer difference logic (with Boolean structure)
- Satisfiable, with model: $t_{1,1} = 5$; $t_{1,2} = 7$; $t_{2,1} = 2$; $t_{2,2} = 6$; $t_{3,1} = 0$; $t_{3,2} = 7$;
- How to solve formulas like the above?

[Moura&Bjorner'11]

• Standard job-shop scheduling formulation:

- n jobs, each composed of m tasks to be performed consecutively on m machines
 - ★ $d_{i,j}$: duration of task *j* for job *i*
- ► Types of constraints:
 - \star Precedence: between two tasks in the same job
 - \star Resource: No two different tasks requiring the same machine can execute simultaneously
 - ★ All jobs must terminate by a time limit max
- An example:

$d_{i,j}$	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

with max = 8

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

What is SMT?

7 / 25

A scheduling example (Cont.)

- An SMT model for job-shop scheduling:
 - $t_{i,j}$: start time for task j of job i
 - ► Example:

$d_{i,j}$	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

with max = 8

Formulation:

 $egin{aligned} (t_{1,1} \geq 0) \land (t_{1,2} \geq t_{1,1}+2) \land (t_{1,2}+1 \leq 8) \land \ (t_{2,1} \geq 0) \land (t_{2,2} \geq t_{1,1}+3) \land (t_{2,2}+1 \leq 8) \land \ (t_{3,1} \geq 0) \land (t_{3,2} \geq t_{1,1}+2) \land (t_{3,2}+3 \leq 8) \land \ ((t_{1,1} \geq t_{2,1}+3) \lor (t_{2,1} \geq t_{1,1}+2)) \land \ ((t_{1,1} \geq t_{3,1}+2) \lor (t_{3,1} \geq t_{1,1}+2)) \land \ ((t_{2,1} \geq t_{3,1}+2) \lor (t_{3,1} \geq t_{2,1}+3)) \land \ ((t_{1,2} \geq t_{2,2}+1) \lor (t_{2,2} \geq t_{1,2}+1)) \land \ ((t_{1,2} \geq t_{3,2}+3) \lor (t_{3,2} \geq t_{1,2}+1)) \land \ ((t_{2,2} \geq t_{3,2}+3) \lor (t_{3,2} \geq t_{2,2}+1)) \end{aligned}$

Integer difference logic with Boolean structure

[E.g. Moura&Bjorner'11]

```
• Example C program:
```

```
int GCD (int x, int y) {
    while (true) {
        int m = x % y;
        if (m = = 0) return y;
        x = y;
        y = m;
    }
}
```

- Can the while loop test be executed twice?
 - If so, which inputs allow this to happen?

Software testing with symbolic execution (Cont.)

• Problem formulation as SMT formula:

SSA Program

```
int GCD (int x0, int y0) {
    int m0 = x0 % y0;
    assert(m0 != 0);
    int x1 = y0;
    int y1 = m0;
    int m1 = x1 % y1;
    assert(m1 = 0);
}
```

Path Formula in	SMT
$(m_0 = x_0 \% y_0)$	\wedge
$\neg(m_0 = 0)$	\wedge
$(x_1 = y_0)$	\wedge
$(y_1 = m_0)$	\wedge
$(m_1 = x_1 \% y_0)$	\wedge
$(m_1=0)$	

• Note: SSA denotes static single assignment form

• Problem formulation as SMT formula:

```
C Program
int GCD (int x, int y) {
    while (true) {
        int m = x % y;
        if (m = = 0) return y;
        x = y;
        y = m;
    }
}
```

	Solution	
• Model:	$x_0 = 2; y_0 = 4; m_0 = 2;$ $x_1 = 4; y_1 = 2; m_1 = 0;$	
• Function	call: GCD(2,4)	

- Recall: This testing approach is known as dynamic symbolic execution
 - ► Example tools: CUTE, Klee, DART, SAGE, Pex, Yogi

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	What is SMT?	11 / 25

Example Theories – EUF

- Equality with Uninterpreted Functions (EUF)
- Is this formula satisfiable?

 $[a \times (f(b) + f(c)) = d] \wedge [b \times (f(a) + f(c)) \neq d] \wedge [a = b]$

- Formula is unsatisfiable
- And this formula?

AAS

CNRS

$$[h(a,g(f(b),f(c)))=d] \wedge [h(b,g(f(a),f(c))) \neq d] \wedge [a=b]$$

- Formula is also unsatisfiable
- Goal: Abstract non-supported operations (functions)
 - E.g. multiplication; ALUs in circuits; etc.

- Wide range of applications
- Variables are either integers or reals
- Decidable, but fairly high complexity
- Fragments can be solved with more efficient methods
 - Bounds
 - $\bigstar \quad x \bowtie k, \ \bowtie \in \{<, >, \le, \ge, =\}$
 - Difference Logic
 - ★ $x y \bowtie k$, $\bowtie \in \{<, >, \le, \ge, =\}$
 - UTVPI (Unit Two-Variable Per Inequality)
 - $\bigstar \quad \pm x \pm y \bowtie k, \, \bowtie \in \{<, >, \le, \ge, =\}$
 - Linear Arithmetic
 - ★ $\sum a_i x_i \bowtie k$, $\bowtie \in \{<, >, \leq, \geq, =\}$
 - Non-Linear Arithmetic • E.g. $3xy - 4x^2z - 4y \le 10$

LAAS-CNRS	
/ Laboratoire d'analyse et d'architecture des systèmes du CNRS	

What is SMT?

Other Theories

13 / 25

- Equality with Uninterpreted Functions (EUF)
- (Restricted) (linear/non-linear) arithmetic over the integers / reals
- Bit vectors
- Arrays
- Pointer logic
- Quantified fragments

- Integer variables
- Conjunction of linear inequalities of the form $x_i x_j \le k$
- Algorithm:

AAS

CNRS

- ► Add edge between x_j and x_i with weight k, for inequality $x_i x_j \le k$
- Add additional source vertex x₀
- ► Add edge from x₀ to x_i, for each other vertex x_i
- ► Use Bellman-Ford algorithm to check for negative cycles
 - ★ Negative cycle: Elimination of variables in (some) inequalities yields $0 \leq -k, k > 0$
 - ★ Note: More efficient algorithms exist

LAAS-CNRS		
/ Laboratoire d'ar	nalyse et d'architecture des	systèmes du CNRS

What is SMT?

Integer difference logic (Cont.)

$$egin{aligned} & (x_4-x_2\leq 3)\wedge (x_4-x_3\leq 6)\wedge (x_1-x_2\leq -1)\wedge \ & (x_1-x_3\leq -2)\wedge (x_1-x_4\leq -1)\wedge (x_3-x_2\leq -1)\wedge \ & (x_3-x_4\leq -2) \end{aligned}$$

Satisfiable:

$$x_1 = -4$$

 $x_2 = 0$
 $x_3 = -2$
 $x_4 = 0$

15 / 25

Algorithms for SMT

- Eager approaches
 - Encode problem to CNF and solve with SAT solver
- Lazy approaches
 - Embed SAT solver with theory solver(s)

- Encode each theory to CNF
 - Integer variables encoded with Boolean variables
 - Encode AtMostk, AtLeastk, and pseudo-Boolean constraints to CNF
 - Recall: Can encode arbitrary constraints to CNF
 - Function/predicate symbols replaced by constants
 - ★ E.g. replace f(a), f(b), f(c) with A, B, C
 - ★ Add clauses:

 $\begin{array}{l} a=b\rightarrow A=B\\ a=c\rightarrow A=C\\ b=c\rightarrow B=C \end{array}$

• Solve CNF formula with SAT solver

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	What is SMT?	19 / 25

LAAS CNRS

Lazy approaches – example

• Example SMT formula:

$$g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d)) \land c \neq d$$

• Represent Boolean structure as CNF formula:

$$(x) \land (\neg y \lor z) \land (\neg w)$$

• Interaction between SAT solver & theory solver (EUF):

SAT Outcome	Model/Core	EUF Outcome	Explanation clause (sent to SAT solver)
SAT	$\{x, \neg y, \neg w\}$	UNSAT	$(\neg x \lor y)$
SAT	$\{x, y, z, \neg w\}$	UNSAT	$(\neg x \lor \neg z \lor w)$
UNSAT	$(x) \land$	$(\neg y \lor z) \land (\neg x$	$(\forall y) \land (\neg w) \land (\neg x \lor \neg z \lor w)$

• Example SMT formula:

$$egin{aligned} &((x_4-x_2\leq 3)ee(x_4-x_3\geq 5))\wedge(x_4-x_3\leq 6)\wedge\ &(x_1-x_2\leq -1)\wedge(x_1-x_3\leq -2)\wedge(x_1-x_4\leq -1)\wedge(x_2-x_1\leq 2)\wedge\ &(x_3-x_2\leq -1)\wedge((x_3-x_4\leq -2)ee(x_4-x_3\geq 2)) \end{aligned}$$

• Represent Boolean structure as CNF formula:

 $(a \lor b) \land (c) \land (d) \land (e) \land (f) \land (g) \land (h) \land (i \lor j)$

• Interaction between SAT solver & theory solver (IDL):

	SAT Outcome	Model/Core	IDL Outcome	Explanation clause (sent to SAT solver)	
	SAT	$\{a, c, \ldots, h, i\}$	UNSAT	$(\neg e \lor \neg g \lor \neg h)$	
	UNSAT	$(e) \land (g) \land (h) \land (\neg$	$e \lor \neg g \lor \neg h)$		
et d'ar	chitecture des systèmes du CN	RS What is	SMT?		21 / 25


```
Lazy approaches – remarks
```

• Why lazy?

AAS-CNRS Laboratoire d'analyse

- ▶ Theory solver called as needed, to check T-consistency
- Key properties:
 - Very flexible organization
 - Modular implementation
 - ★ Easy to add theory solvers
 - Currently, the most efficient algorithms
 - Clear separation between Boolean and theory domains
 - Theory information unable to guide search
- Widely used by modern SMT solvers
 - ► Z3, Yices, OpenSMT, MathSAT, CVC, Barcelogic, etc.

- Key techniques in all efficient SMT solvers:
 - Check T-consistency of partial assignments
 - Given T-inconsistent assignment M, compute $M' \subseteq M$ and add $\neg M'$ as a clause
 - ▶ Given T-inconsistent assignment, backtrack to where assignment is T-consistent

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	What is SMT?	23 / 25

• What is DPLL(T)?

DPLL(T) = DPLL(X) + T-Solver

- DPLL(X)
 - ► SAT solver
 - Cannot use: pure literals
- *T*-Solver:
 - Checks T-consistency of conjunctions of literals
 - Performs theory propagation
 - Computes explanations of inconsistency
 - ► Note: *T*-propagation should be incremental and backtrackable

- Both methods combine dedicated algorithm (Theories / Propagators)
- The difference is subtle: a propagator could embed a Theory solver
 - They perform the same tasks (propagation, inconsistency detection, explanation)
 - ▶ But propagators are tied to CSP domains, and theories are difficult to combine
- Advantages of SMT: Theory domains can be open or even infinite (new literals can be added lazily)
 - May allow a stronger reasoning
- Advantages of CP: Propagators can be combined, theories cannot (as easily)
 - ▶ Interesting applications require solving formulas involving multiple theories

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Vhat is SMT?

25 / 25