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Constraint Programming

Constraint Satisfaction Problems are generalization of Boolean satisfiability to non-Boolean domains

Standard constraint programming solvers are similar to DPLL

▶ No clause learning (Clause-learning CSP solvers existed before CDCL but were not that successful)

▶ But stronger propagation

Constraint Propagation

Given a constraint c = (R(c),S(c)), a propagator is an algorithm that reduce the domains so
that the constraint is arc consistent.
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Propagators

A constraint solver is a library of constraints, each with its dedicated propagator

Arc Consistency

A constraint c is Arc Consistent on domain D if and only if for every x ∈ S(c) and for every
j ∈ D(x), there exists a tuple σ ∈ R(c) ∩

∏
x∈X D(x) such that σ(x) = j .

The constraint can be a clause: arc consistency corresponds to unit propagation

The constraint can be a primitive relation (e.g., ‘≤’) and arc consistency is easy and efficient

▶ Propagation of x ≤ y :
⋆ Event lower bound of x (min(x)) has changed: update min(y) to min(x)

⋆ Event upper bound of y has changed: update max(x) to max(y)

⋆ Do not wake up on other events

Can be a much larger and more complex relation, even an NP-hard relation

▶ E.g., “the graph given by the incidence matrix x is a clique of size greater than or equal to y”
▶ Arc consistency is not required for correctness (and is NP-hard when the constraint relation is NP-hard)
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AllDifferent

AllDifferent(x1, . . . , xn)⇔ ∀1 ≤ i < j ≤ n, xi ̸= xj

For instance: AllDifferent(x1, x2, x3, x4)

▶ D(x1) = {1}
▶ D(x2) = {1, 2, 3}D(x2) = {2, 3}
▶ D(x3) = {1, 2, 3}D(x3) = {2, 3}
▶ D(x4) = {1, 2, 3, 4}D(x4) = {4}

Only two solutions: (1, 2, 3, 4) and (1, 3, 2, 4), therefore:

▶ x2 = 1, x3 = 1, x4 = 1, x4 = 2, x4 = 3 are not viable

How can we compute that efficiently?

▶ Generating and testing the validity all permutations would take exponential time
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AllDifferent

AllDifferent(x1, . . . , xn)⇔ ∀1 ≤ i < j ≤ n, xi ̸= xj

For instance: AllDifferent(x1, x2, x3, x4, x5, x6)

▶ D(x1) = {1, 2, 3, 5}
▶ D(x2) = {2, 3, 4}
▶ D(x3) = {3, 5}
▶ D(x4) = {1, 2, 3, 4, 5}
▶ D(x5) = {3, 5}
▶ D(x6) = {4, 5, 6, 7}

x1 x2 x3 x4 x5 x6

1 2 3 4 5 6 7
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AllDifferent

x1 x2 x3 x4 x5 x6

1 2 3 4 5 6 7

t

A solution of the AllDifferent constraint is a maximal matching of the graph

We can compute a maximal matching in O(n
3
2m) (Hopcroft Karp)

Cycle: alternative matching. Strongly Connected Components are set of vertices all pairwise connected by a
cycle. Tarjan’s Algorithm finds them all in O(nm)

An edge (x , v) belongs to a strongly connected component iff the value v is viable for x ⇒ pruning!
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AllDifferent

AllDifferent(x1, . . . , xn)⇔ ∀1 ≤ i < j ≤ n, xi ̸= xj

For instance: AllDifferent(x1, x2, x3, x4, x5, x6)

▶ D(x1) = {1, 2, 3, 5}
▶ D(x2) = {2, 3, 4}
▶ D(x3) = {3, 5}
▶ D(x4) = {1, 2, 3, 4, 5}
▶ D(x5) = {3, 5}
▶ D(x6) = {4, 5, 6, 7}

▶ D(x1) = {1, 2}
▶ D(x2) = {2, 4}
▶ D(x3) = {3, 5}
▶ D(x4) = {1, 2, 4}
▶ D(x5) = {3, 5}
▶ D(x6) = {6, 7}
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Constraint Propagation

When and how propagators are called?

Typically via a Constraint Queue and an Event Stack

The event stack contains events corresponding to
domain reduction

▶ Variable x is assigned a value v

▶ The lower (resp. upper) bound of variable x has
increased (resp. decreased)

▶ The domain of variable x has lost at least one value

▶ The domain of variable x has lost at value v

Every propagator watches some events

Algorithm 0: Constraint Propagation

repeat
while Event-Stack ̸= ∅ do

e ← Event-Stack.pop-back();
foreach c ∈Watchers(e) do

Constraint-Queue.add(c);

if Constraint-Queue ̸= ∅ then
c ← Constraint-Queue.pop-priority();
c.propagate(e);
/* might push events on the event stack */

until Event-Stack = ∅;
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Sudoku AC( ̸=)
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Sudoku BC(AllDifferent)
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Sudoku AC(AllDifferent)
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Sudoku (Solution)
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Sum

n∑
i=1

aixi = K

Subset Sum: given a set of integers and an integer K , does there exist a subset whose sum is equal to K

▶ A variable with domain {0, 1} for each integer, coefficients are the inetegers

Finding a support is NP-hard

▶ Therefore, achieving AC is NP-hard
▶ Achieving BC is NP-hard too, since on {0, 1} domains, a bounds support is a support

However, one can enforce BC on each conjunct of:

n∑
i=1

aixi ≤ K and

n∑
i=1

aixi ≥ K
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Sum

n∑
i=1

aixi ≤ K

Assume that all coefficients are positive

max(xi ) +
∑n

j=1 aj min(xj)−min(xi ) ≤ K

▶ xi ≤ K −
∑n

j=1 aj min(xj )−min(xi )

min(xi ) +
∑n

j=1 aj max(xj)−min(xi ) ≥ K

▶ xi ≥ K −
∑n

j=1 aj max(xj )−min(xi )
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Kakuro
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Example: Kakuro

∑6
i=1 xi = 39

AllDifferent({x1, . . . , x6}, {1, . . . , 9})
x1 : {

9

8 9}
x2 : {1 2 6 7 8 9}
x3 : {

9

8 9}
x4 : {1 5 6 8 9}
x5 : {1 2 6 7 8 9}
x6 : {

9

4 5 8 9}

39

Propagation
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Example: Kakuro

∑6
i=1 xi = 39

AllDifferent({x1, . . . , x6}, {1, . . . , 9})
x1 : {

9

8 9}
x2 : {1 2 6 7

9

}
x3 : {

9

8 9}
x4 : {1 5 6

9

}
x5 : {1 2 6 7

9

}
x6 : {

9

4 5

9

}

39

Propagation

AllDifferent({x1, x3}, {8, 9})
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Example: Kakuro

∑6
i=1 xi = 39

AllDifferent({x1, . . . , x6}, {1, . . . , 9})
x1 : {

9

8 9}
x2 : {

9

6 7

9

}
x3 : {

9

8 9}
x4 : {

9

5 6

9

}
x5 : {

9

6 7

9

}
x6 : {

9

4 5

9

}

39

Propagation∑6
i=1 = 39

▶ ⇒ min(x2) ≥ 39−
∑

i ̸=2 max(xi )
▶ ⇒ min(x2) ≥ 3, (& min(x5) ≥ 3 & min(x4) ≥ 2)
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Example: Kakuro

∑6
i=1 xi = 39

AllDifferent({x1, . . . , x6}, {1, . . . , 9})
x1 : {

9

8 9}
x2 : {

9

6 7

9

}
x3 : {

9

8 9}
x4 : {

9

5

9

}
x5 : {

9

6 7

9

}
x6 : {

9

4

9

}

39

Propagation

AllDifferent({x2, x5}, {6, 7})

AllDifferent({x4}, {5})
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Motivation

Constraint programming has powerful propagation algorithm

Example, Kakuro:

Constraint Programming

▶ One variable xi,j ∈ {1, . . . , 9} for every cell

▶ For every clue:

⋆ One AllDifferent constraint and two Cardinality constraints

SAT Encoding

▶ One variable xi,j,v for every cell and every v ∈ {1, . . . , 9}
plus a linear number of clauses (somewhat equivalent)

▶ For every clue of size n:

⋆ 9(n-1)n/2 binary clauses to encode AllDifferent: unit propagation is
not as strong as constraint propagation on AllDifferent

⋆ SAT encoding of cardinality: unit propagation is not as efficient as
constraint propagation on Cardinality

But no clause learning!

▶ Clause learning was developped in CP (even before zChaff and GRASP) but was not as successful
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Domains

There are efficient encoding of domains, e.g., sequential counters

▶ xv : variable x takes value v , sv : variable x lower than or equal to v

Same space complexity (O(|D|))

Domain change slightly less efficient

▶ Assignement, value removal and bound change take O(|D|) time in the SAT encoding
▶ They are in constant time in CP
▶ However, amortized to the same worst-case down a branch (removing all values one at a time takes O(|D|) time in

both cases)
▶ There are many more read operations than write operations

Domain events correspond to domain literals:

▶ Upper bound of x has changed to v : sv
▶ Lower bound of x has changed to v : ¯sv−1

▶ Value v was removed from the domain of x: x̄v
▶ Value v has been assigned to variable x: xv
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Lazy Clause Generation

Initially only domain clauses, constraints are propagated as in CP [Katsirelos & Bacchus]

For every domain reduction l made by propagating a constraint generate an asserting explanation clause
(p1 ∨ p2 ∨ . . . ∨ l)

▶ Used during conflict analysis, but not for unit propagation (the propagator already does this pruning)

▶ Learn first UIP clauses exactly as CDCL (and unit propagate them)

Every constraint has a dedicated propagation algorithm and an explanation algorithm

▶ Explanation clauses can be generated a posteriori (during conflict analysis) to avoid unecessary calls to the
explanation algorithm
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Example: x ≤ y

Propagation of x ≤ y :

▶ Event x̄v (lower bound of x has changed to v + 1): triggers ȳv

⋆ Explanation clause (xv ∨ ȳv )

▶ Event yv (upper bound of y has changed): triggers xv

⋆ Explanation clause (xv ∨ ȳv )

Suited for lazy explanation: the context is irrelevant
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Explaining Cardinality
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Explaining AllDifferent: Hall sets

x1 x2 x3 x4 x5 x6

1 2 3 4 5 6 7

t

Strongly connected components that do not include t have as many variables as values (Hall sets)
▶ The only way to a free value is via t

Consider any edge (v → x) connecting a Hall set to a distinct SCC
▶ There cannot be a edge between x and the Hall set of v otherwise the SCCs would not be distinct

A Hall set is a set of variables X such that |
⋃

x∈X D(x)| = |X |
▶ An edge (v → x) is arc inconsistent if and only if v is in a Hall set and x is not in the same SCC
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Explaining AllDifferent

For instance: AllDifferent(x1, x2, x3, x4)

▶ D(x1) = {1, 2, 3}
▶ D(x2) = {1, 2, 3}
▶ D(x3) = {1, 2, 3}
▶ D(x4) = {1, 2, 3, 4}D(x4) = {4}

{1, 2, 3} is a Hall set, therefore {1, 2, 3} are not viable for x4

We can use the Hall set as explanation clause:

(s1,3 ∧ s2,3 ∧ s3,3) =⇒ ¬s4,3
⇐⇒

(¬s1,3 ∨ ¬s2,3 ∨ ¬s3,3 ∨ ¬s4,3)

(i.e., if x1 ≤ 3 and x2 ≤ 3 and x3 ≤ 3, then x4 > 3)
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Summary

Mapping between CSP variables and Boolean variables (can be implicit)

Propagation of the original constraints is done via propagators (dedicated algorithms)

Propagators generate explanation clauses, used to encode the conflict graph

Learn First-UIP clauses with this conflict graph

Propagate the learnt clauses via unit-propagation
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