# Foundations of Computing 

Module Introduction

Emmanuel Hebrard (adapted from) João Marques Silva

CNRS

(1) Constraint Programming
(2) Clause Learning in CP Outline
(1) Constraint Programming
(2) Clause Learning in CP

- Constraint Satisfaction Problems are generalization of Boolean satisfiability to non-Boolean domains
- Standard constraint programming solvers are similar to DPLL
- No clause learning (Clause-learning CSP solvers existed before CDCL but were not that successful)
- But stronger propagation


## Constraint Propagation

Given a constraint $c=(R(c), S(c))$, a propagator is an algorithm that reduce the domains so that the constraint is arc consistent.

CNRS

## Propagators

- A constraint solver is a library of constraints, each with its dedicated propagator


## Arc Consistency

A constraint $c$ is Arc Consistent on domain $\mathcal{D}$ if and only if for every $x \in S(c)$ and for every $j \in \mathcal{D}(x)$, there exists a tuple $\sigma \in R(c) \cap \prod_{x \in \mathcal{X}} \mathcal{D}(x)$ such that $\sigma(x)=j$.

- The constraint can be a clause: arc consistency corresponds to unit propagation
- The constraint can be a primitive relation (e.g., ' $\leq$ ') and arc consistency is easy and efficient
- Propagation of $x \leq y$ :
$\star$ Event lower bound of $x(\min (x))$ has changed: update $\min (y)$ to $\min (x)$
$\star$ Event upper bound of $y$ has changed: update $\max (x)$ to $\max (y)$
$\star$ Do not wake up on other events
- Can be a much larger and more complex relation, even an NP-hard relation
- E.g., "the graph given by the incidence matrix $\mathbf{x}$ is a clique of size greater than or equal to $y$ "
- Arc consistency is not required for correctness (and is NP-hard when the constraint relation is NP-hard)
- AllDifferent $\left(x_{1}, \ldots, x_{n}\right) \Leftrightarrow \forall 1 \leq i<j \leq n, x_{i} \neq x_{j}$
- For instance: AllDifferent $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
- $\mathcal{D}\left(x_{1}\right)=\{1\}$
- $\mathcal{D}\left(x_{2}\right)=\{1,2,3\} \mathcal{D}\left(x_{2}\right)=\{2,3\}$
- $\mathcal{D}\left(x_{3}\right)=\{1,2,3\} \mathcal{D}\left(x_{3}\right)=\{2,3\}$
- $\mathcal{D}\left(x_{4}\right)=\{1,2,3,4\} \mathcal{D}\left(x_{4}\right)=\{4\}$
- Only two solutions: $(1,2,3,4)$ and $(1,3,2,4)$, therefore:
- $x_{2}=1, x_{3}=1, x_{4}=1, x_{4}=2, x_{4}=3$ are not viable
- How can we compute that efficiently?
- Generating and testing the validity all permutations would take exponential time
- AllDifferent $\left(x_{1}, \ldots, x_{n}\right) \Leftrightarrow \forall 1 \leq i<j \leq n, x_{i} \neq x_{j}$
- For instance: AllDifferent $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$
- $\mathcal{D}\left(x_{1}\right)=\{1,2,3,5\}$
- $\mathcal{D}\left(x_{2}\right)=\{2,3,4\}$
- $\mathcal{D}\left(x_{3}\right)=\{3,5\}$
- $\mathcal{D}\left(x_{4}\right)=\{1,2,3,4,5\}$
- $\mathcal{D}\left(x_{5}\right)=\{3,5\}$
- $\mathcal{D}\left(x_{6}\right)=\{4,5,6,7\}$


- A solution of the AlLDifferent constraint is a maximal matching of the graph
- We can compute a maximal matching in $O\left(n^{\frac{3}{2}} m\right)$ (Hopcroft Karp)
- Cycle: alternative matching. Strongly Connected Components are set of vertices all pairwise connected by a cycle. Tarjan's Algorithm finds them all in $O(n m)$
- An edge $(x, v)$ belongs to a strongly connected component iff the value $v$ is viable for $x \Rightarrow$ pruning!
- AllDifferent $\left(x_{1}, \ldots, x_{n}\right) \Leftrightarrow \forall 1 \leq i<j \leq n, x_{i} \neq x_{j}$
- For instance: AllDifferent $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$
- $\mathcal{D}\left(x_{1}\right)=\{1,2,3,5\}$
- $\mathcal{D}\left(x_{2}\right)=\{2,3,4\}$
- $\mathcal{D}\left(x_{3}\right)=\{3,5\}$
- $\mathcal{D}\left(x_{4}\right)=\{1,2,3,4,5\}$
- $\mathcal{D}\left(x_{5}\right)=\{3,5\}$
- $\mathcal{D}\left(x_{6}\right)=\{4,5,6,7\}$
- $\mathcal{D}\left(x_{1}\right)=\{1,2\}$
- $\mathcal{D}\left(x_{2}\right)=\{2,4\}$
- $\mathcal{D}\left(x_{3}\right)=\{3,5\}$
- $\mathcal{D}\left(x_{4}\right)=\{1,2,4\}$
- $\mathcal{D}\left(x_{5}\right)=\{3,5\}$
- $\mathcal{D}\left(x_{6}\right)=\{6,7\}$
- When and how propagators are called?
- Typically via a Constraint Queue and an Event Stack
- The event stack contains events corresponding to domain reduction
- Variable $x$ is assigned a value $v$
- The lower (resp. upper) bound of variable $x$ has increased (resp. decreased)
- The domain of variable $x$ has lost at least one value
- The domain of variable $x$ has lost at value $v$
- Every propagator watches some events

```
Algorithm 0: Constraint Propagation
repeat
    while Event-Stack \(\neq \emptyset\) do
            \(e \leftarrow\) Event-Stack.pop-back();
            foreach \(c \in\) Watchers \((e)\) do
            Constraint-Queue.add(c);
        if Constraint-Queue \(\neq \emptyset\) then
            \(c \leftarrow\) Constraint-Queue.pop-priority ();
            c. propagate(e);
            /* might push events on the event stack */
until Event-Stack = \(\emptyset\);
```

| $\begin{array}{\|lll} \hline 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \\ \hline \end{array}$ | 2 | $\begin{array}{lll} 7 & 89 \\ 45 & 6 \\ 123 \\ \hline \end{array}$ | 5 | $\begin{aligned} & 789 \\ & 456 \\ & 183 \\ & \hline \end{aligned}$ | 1 | $\begin{array}{\|l\|ll\|} \hline 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \\ \hline \end{array}$ | 9 | 78 45 4 12 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 78 4 4 5 | $\begin{array}{\|l\|} \hline 78 \\ 4 \\ 4 \end{array} 6$ | 2 | $\begin{array}{r}789 \\ 456 \\ \hline\end{array}$ | 3 |  | 789 | 6 |
| $\left\|\begin{array}{lll} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 1 & 3 \end{array}\right\|$ | 123 | $\begin{array}{lll} 1 & 2 & 3 \\ \hline 78 & 8 \\ 4 & 9 \end{array}$ | $\begin{array}{ll} 7 & 8 \\ 4 & 9 \\ \hline & 5 \\ 1 & 2 \end{array}$ | 2 |  | $\left\|\begin{array}{lll} 1 & 2 & 3 \\ \hline 7 & 8 & 9 \\ 4 & 5 & 6 \end{array}\right\|$ | 123 | 78  <br> 45  <br> 4 6 <br> 123  |
| $\begin{array}{\|lll} \hline 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{array}$ | $\left.\begin{array}{\|lll} \hline & 8 & 8 \\ 4 & 9 & 6 \\ 1 & 5 & 6 \end{array} \right\rvert\,$ | 1 | $\begin{aligned} & 789 \\ & 456 \\ & 1323 \\ & \hline \end{aligned}$ | $\begin{aligned} & 789 \\ & 456 \\ & 143 \\ & \hline \end{aligned}$ | $\begin{array}{lll} \hline 789 \\ 45 & 5 \\ 13 & 6 \end{array}$ | 6 | $\begin{array}{\|l\|l\|} \hline 789 \\ 4556 \\ 13 & 3 \\ \hline \end{array}$ | $\begin{array}{llll}7 & 8 \\ 45 \\ 15 \\ 123\end{array}$ |
| 5 | 4 | $\begin{array}{lll} 7 & 89 \\ 45 & 5 \\ 12 & 3 \end{array}$ | $\begin{aligned} & 789 \\ & 456 \\ & 123 \\ & \hline \end{aligned}$ | $\begin{aligned} & 789 \\ & 456 \\ & 123 \end{aligned}$ | $\begin{array}{lll} 7 & 89 \\ 45 & 6 \\ 1 & 23 \\ \hline \end{array}$ | $\begin{array}{llll} \hline 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \\ \hline \end{array}$ | 1 | 9 |
| $\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \hline 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{array}$ | $\begin{array}{lll} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{array}$ | 2 | $\begin{aligned} & 789 \\ & 456 \\ & 183 \\ & \hline \end{aligned}$ | $\begin{aligned} & 789 \\ & 456 \\ & 183 \\ & \hline \end{aligned}$ | $\begin{array}{ll} 789 \\ 45 & 8 \\ 1 & 23 \\ \hline \end{array}$ | 7 | $\begin{array}{lll} 4 & 5 & 6 \\ 1 & 2 & 3 \\ \hline \end{array}$ | $\begin{array}{r}78 \\ 78 \\ 45 \\ 123 \\ \hline 12\end{array}$ |
| $\begin{array}{llll} \hline 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{array}$ | 9 | $\begin{array}{lll} \hline 7 & 8 \\ 4 & 5 & 6 \\ 12 & 3 \end{array}$ | $\begin{aligned} & 789 \\ & 456 \\ & 1233 \\ & \hline \end{aligned}$ | 3 | $\begin{array}{ll} \hline 789 \\ 456 \\ 123 & \\ \hline \end{array}$ | $\begin{array}{lll} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{array}$ | 8 |  |
| 2 | $\begin{array}{llll} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{array}$ | $\begin{array}{ll} 7 & 89 \\ 456 \\ 13 & 6 \\ \hline \end{array}$ | 8 | $\begin{array}{ll} 7 & 89 \\ 45 \\ 45 \\ 12 & \end{array}$ | 4 | $\begin{array}{llll} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{array}$ | $\begin{array}{llll} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{array}$ | 7 |
| $\begin{array}{\|lll} \hline 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{array}$ | 1 | $\begin{aligned} & 78 \\ & 489 \\ & 456 \end{aligned}$ | 9 | $\begin{aligned} & 78 \\ & 789 \\ & 4556 \end{aligned}$ | 7 | $\begin{array}{lll} 7 & 8 & 9 \\ 4 & 5 & 6 \end{array}$ | 6 | 7 8 <br>  8 <br> 456  <br> 123  |


| 7  <br> 4 6 | 2 | $\begin{array}{ll}7 \\ 4 & 6\end{array}$ | 5 | 78 | 1 | 8 | 9 | $4^{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 5 | ${ }^{7} 459$ | 2 | 79 | 3 | 45 | 45 | 6 |
| 9 | 3 | $5^{9}$ | 4 | 6 | 89 | $\begin{array}{r}8 \\ 8 \\ 1 \\ 1 \\ \hline\end{array}$ | 7 | 8 5 2 2 |
| $\begin{array}{r}7 \\ 7 \\ \\ \hline\end{array}$ | 78 | 1 | 3 | $\begin{array}{\|lll} \hline 7 & 8 \\ 4 & 5 & \\ & 2 & \\ \hline \end{array}$ | $\begin{aligned} & \hline 89 \\ & 5 \\ & 2 \end{aligned}$ | 6 | $\begin{array}{r}4 \\ \\ 2 \\ \hline\end{array}$ | 1 <br> 8 <br> 4 <br>  |
| 5 | 4 | 8 | $\begin{array}{\|r\|} \hline 7 \\ \hline 6 \\ \hline \end{array}$ | $78$ | ${ }^{8}{ }_{6}$ | $\begin{aligned} & 8 \\ & 23 \\ & \hline \end{aligned}$ | 1 | 9 |
| 3 | ${ }^{8}$ | 2 | 6 3 |  | $\begin{array}{ll}8 & 9 \\ 5 & 6\end{array}$ | 7 | 45 | -88 |
| $\begin{array}{\|l\|l} \hline 7 & 6 \\ 4 & 6 \end{array}$ | 9 | ${ }^{7} 785$ | 6 | 3 | ${ }^{5} 56$ | $\begin{aligned} & 4 \\ & 4 \\ & 1 \end{aligned}$ | 8 | $\begin{array}{ll} 4 \\ 1 & 5 \\ 1 \end{array}$ |
| 2 | 56 | $\begin{array}{ll}5 & 6 \\ \\ 3\end{array}$ | 8 | $1{ }^{5}$ | 4 | $\begin{array}{r}5 \\ 1 \\ \hline\end{array}$ | $5_{3}$ | 7 |
| $4_{3}$ | 1 | [ 8 | 9 | ${ }_{2}^{5}$ | 7 | $\begin{array}{ll}4 & 5 \\ \\ 2 & 3\end{array}$ | 6 | $\begin{array}{r}4 \\ 4 \\ 4 \\ \hline\end{array}$ |

Sudoku BC(AllDifferent)

| $\begin{array}{ll}7 \\ 4 & 6\end{array}$ | 2 | $\begin{array}{ll}7 & \\ 4 & 6\end{array}$ | 5 | 78 | 1 | $4^{8}$ | 9 | $4^{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | ${ }^{7}$ | $\left.\begin{array}{\|ll\|} \hline 7 & \\ 4 & 5 \end{array} \right\rvert\,$ | 2 | 79 | 3 | 45 | 45 | 6 |
| 1 | 3 | 5 | 4 | 6 | 89 | [15 $\begin{array}{r}8 \\ 5 \\ 1 \\ \hline\end{array}$ | 7 | 8 <br> 5 <br> 2 |
|  | 78 | 1 | $3$ | $\begin{array}{llll}7 & 8 \\ 4 & 5\end{array}$ | ${ }_{5}^{8} 9$ | 6 | 2 | - 8 |
| 5 | 4 | ${ }_{3}^{6}$ | 7 <br>  <br>  | $78$ | ${ }_{2}^{8}$ | ${ }^{8}$ | 1 | 9 |
|  | ${ }^{8} 6$ | 2 | ${ }_{6} 6$ | ${ }_{5}^{8} 9$ | $\begin{aligned} & 89 \\ & 5 \end{aligned}$ | 7 | 45 | -88 |
| $\begin{array}{\|l\|l} \hline 7 & \\ 4 & 6 \end{array}$ | 9 | ${ }_{4}^{7} 5$ | ${ }_{1}{ }^{6}$ | 3 | $\begin{aligned} & 5 \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 1 \end{aligned}$ | 8 | $\begin{array}{ll} 4 & 5 \\ 1 & 2 \end{array}$ |
| 2 | 56 | $\begin{array}{r} 5 \\ \hline \end{array}$ | 8 | $1{ }^{5}$ | 4 | 9 | $5_{3}$ | 7 |
| 3 | 1 | 8 | 9 | $\begin{aligned} & 5 \\ & 2 \\ & 2 \end{aligned}$ | 7 | 4 4 4 2 | 6 | $\begin{array}{r}4 \\ \hline\end{array}$ |

Sudoku $A C$ (AllDifferent)

| 7 6 <br> 4 6 | 2 | 7  <br> 4 6 | 5 | 78 | 1 | $4^{8}$ | 9 | $4^{8}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | ${ }^{7}$ | ${ }_{4}^{7} 59$ | 2 | 79 | 3 | 1 | 45 | 6 |  |
| 1 | 3 | 5 | 4 | 6 | 89 | 5 <br> 2 | 7 | 8 <br> 5 <br> 5 |  |
| $9$ | 78 | 1 | 3 | + ${ }_{4}^{8} 9$ | 8 ${ }_{5}$ | 6 | 2 | 4 8 |  |
| 5 | 4 | 7 <br>  <br>  <br>  <br> 3 <br> 3 | 3 | 8 | ${ }^{8}{ }^{6}$ | ${ }^{8}$ | 1 | 9 |  |
| $6$ | ${ }^{8} 6$ | 2 | 1 | ${ }_{4}{ }^{8} 59$ | $\begin{aligned} & 89 \\ & 5 \\ & 5 \end{aligned}$ | 7 | 45 | 48 |  |
| $\begin{aligned} & 7 \\ & 4 \end{aligned}$ | 9 | 7 4 4 | 6 | 3 | 5 | 45 | 8 | 1 |  |
| 2 | 56 | $\begin{array}{r}56 \\ \\ \hline\end{array}$ | 8 | 1 | 4 | 9 | $5_{3}$ | 7 |  |
| $4_{3}$ | 1 | 8 | 9 | ${ }_{2}^{5}$ | 7 | [ 4 | 6 | 4 |  |


| 4 | 2 | 6 | 5 | 7 | 1 | 3 | 9 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | 5 | 7 | 2 | 9 | 3 | 1 | 4 | 6 |
| 1 | 3 | 9 | 4 | 6 | 8 | 2 | 7 | 5 |
| 9 | 7 | 1 | 3 | 8 | 5 | 6 | 2 | 4 |
| 5 | 4 | 3 | 7 | 2 | 6 | 8 | 1 | 9 |
| 6 | 8 | 2 | 1 | 4 | 9 | 7 | 5 | 3 |
| 7 | 9 | 4 | 6 | 3 | 2 | 5 | 8 | 1 |
| 2 | 6 | 5 | 8 | 1 | 4 | 9 | 3 | 7 |
| 3 | 1 | 8 | 9 | 5 | 7 | 4 | 6 | 2 |

(4uM

$$
\sum_{i=1}^{n} a_{i} x_{i}=K
$$

- Subset Sum: given a set of integers and an integer $K$, does there exist a subset whose sum is equal to $K$
- A variable with domain $\{0,1\}$ for each integer, coefficients are the inetegers
- Finding a support is NP-hard
- Therefore, achieving $A C$ is NP-hard
- Achieving $B C$ is NP-hard too, since on $\{0,1\}$ domains, a bounds support is a support
- However, one can enforce $B C$ on each conjunct of:

$$
\sum_{i=1}^{n} a_{i} x_{i} \leq K \text { and } \sum_{i=1}^{n} a_{i} x_{i} \geq K
$$

$$
\sum_{i=1}^{n} a_{i} x_{i} \leq K
$$

- Assume that all coefficients are positive
- $\max \left(x_{i}\right)+\sum_{j=1}^{n} a_{j} \min \left(x_{j}\right)-\min \left(x_{i}\right) \leq K$
- $x_{i} \leq K-\sum_{j=1}^{n} a_{j} \min \left(x_{j}\right)-\min \left(x_{i}\right)$
- $\min \left(x_{i}\right)+\sum_{j=1}^{n} a_{j} \max \left(x_{j}\right)-\min \left(x_{i}\right) \geq K$
- $x_{i} \geq K-\sum_{j=1}^{n} a_{j} \max \left(x_{j}\right)-\min \left(x_{i}\right)$
Kakuro

- $\sum_{i=1}^{6} x_{i}=39$
- AllDifferent $\left(\left\{x_{1}, \ldots, x_{6}\right\},\{1, \ldots, 9\}\right)$
$\left.\begin{array}{llllllll}x_{1}: & \{ & & & & & & 8 \\ x_{2} & : & \{1 & 2 & & & 6 & 7 \\ x_{3} & : & \{ & & & & & \\ \hline\end{array}\right)$



## Propagation

- $\sum_{i=1}^{6} x_{i}=39$
- AllDifferent $\left(\left\{x_{1}, \ldots, x_{6}\right\},\{1, \ldots, 9\}\right)$

| $x_{1}:$ | $\{$ |  |  |  |  |  | 8 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x_{2}:$ | $\{1$ | 2 |  |  | 6 | 7 |  |
| $x_{3}:$ | $\{$ |  |  |  |  |  | 8 |
| $x_{4}:$ | $\{1$ |  |  | 5 | 6 |  |  |
| $x_{5}:$ | $\{1$ | 2 |  |  | 6 | 7 |  |
| $x_{6}:$ | $\{$ |  | 4 | 5 |  |  |  |



## Propagation

- AllDifferent $\left(\left\{x_{1}, x_{3}\right\},\{8,9\}\right)$
- $\sum_{i=1}^{6} x_{i}=39$
- $\operatorname{AllDifferent}\left(\left\{x_{1}, \ldots, x_{6}\right\},\{1, \ldots, 9\}\right)$
$\left.\begin{array}{rllllll}x_{1} & : & \{ & & & & \\ x_{2} & : & \{ & & & 6 & 7 \\ x_{3} & : & & & 9\end{array}\right\}$



## Propagation

$$
\begin{aligned}
& \text { - } \sum_{i=1}^{6}=39 \\
& \quad \Rightarrow \min \left(x_{2}\right) \geq 39-\sum_{i \neq 2} \max \left(x_{i}\right) \\
& \quad \Rightarrow \min \left(x_{2}\right) \geq 3,\left(\& \min \left(x_{5}\right) \geq 3 \& \min \left(x_{4}\right) \geq 2\right)
\end{aligned}
$$

$\qquad$ Example: Kakuro

- $\sum_{i=1}^{6} x_{i}=39$
- AllDifferent $\left(\left\{x_{1}, \ldots, x_{6}\right\},\{1, \ldots, 9\}\right)$
$\left.\begin{array}{lllllll}x_{1}: & \{ & & & & 8 & 9\} \\ x_{2}: & \{ & & & 6 & 7 & \\ x_{3}: & \{ & & & & & 8 \\ x_{4} & : & 9\end{array}\right\}$



## Propagation

- AllDifferent $\left(\left\{x_{2}, x_{5}\right\},\{6,7\}\right)$
- AllDifferent $\left(\left\{x_{4}\right\},\{5\}\right)$
$\qquad$
(1) Constraint Programming


## (2) Clause Learning in CP

- Constraint programming has powerful propagation algorithm
- Example, Kakuro:


## Constraint Programming

- One variable $x_{i, j} \in\{1, \ldots, 9\}$ for every cell
- For every clue:
$\star$ One AllDifferent constraint and two Cardinality constraints


## SAT Encoding

- One variable $x_{i, j, v}$ for every cell and every $v \in\{1, \ldots, 9\}$ plus a linear number of clauses (somewhat equivalent)
- For every clue of size $n$ :
* $9(\mathrm{n}-1) \mathrm{n} / 2$ binary clauses to encode AllDifferent: unit propagation is not as strong as constraint propagation on AllDifferent
$\star$ SAT encoding of cardinality: unit propagation is not as efficient as constraint propagation on Cardinality
- But no clause learning!
- Clause learning was developped in CP (even before zChaff and GRASP) but was not as successful
- There are efficient encoding of domains, e.g., sequential counters
- $x_{v}$ : variable $x$ takes value $v, s_{v}$ : variable $x$ lower than or equal to $v$
- Same space complexity $(O(|\mathcal{D}|))$
- Domain change slightly less efficient
- Assignement, value removal and bound change take $O(|\mathcal{D}|)$ time in the SAT encoding
- They are in constant time in CP
- However, amortized to the same worst-case down a branch (removing all values one at a time takes $O(|\mathcal{D}|)$ time in both cases)
- There are many more read operations than write operations
- Domain events correspond to domain literals:
- Upper bound of $x$ has changed to $v: s_{V}$
- Lower bound of $x$ has changed to $v: s_{v-1}^{-}$
- Value $v$ was removed from the domain of $x: \overline{x_{v}}$
- Value $v$ has been assigned to variable $x: x_{v}$


## Lazy Clause Generation

- Initially only domain clauses, constraints are propagated as in CP
[Katsirelos \& Bacchus]
- For every domain reduction / made by propagating a constraint generate an asserting explanation clause $\left(p_{1} \vee p_{2} \vee \ldots \vee I\right)$
- Used during conflict analysis, but not for unit propagation (the propagator already does this pruning)
- Learn first UIP clauses exactly as CDCL (and unit propagate them)
- Every constraint has a dedicated propagation algorithm and an explanation algorithm
- Explanation clauses can be generated a posteriori (during conflict analysis) to avoid unecessary calls to the explanation algorithm
Example: $x \leq y$
- Propagation of $x \leq y$ :
- Event $\overline{x_{v}}$ (lower bound of $x$ has changed to $v+1$ ): triggers $\overline{y_{v}}$
$\star$ Explanation clause $\left(x_{v} \vee \overline{y_{v}}\right)$
- Event $y_{v}$ (upper bound of $y$ has changed): triggers $x_{v}$

```
\star Explanation clause ( }\mp@subsup{x}{v}{}\vee\overline{\mp@subsup{y}{v}{}}
```

- Suited for lazy explanation: the context is irrelevant


## Explaining AllDifferent: Hall sets



- Strongly connected components that do not include $t$ have as many variables as values (Hall sets)
- The only way to a free value is via $t$
- Consider any edge $(v \rightarrow x)$ connecting a Hall set to a distinct SCC
- There cannot be a edge between $x$ and the Hall set of $v$ otherwise the SCCs would not be distinct
- A Hall set is a set of variables $\mathcal{X}$ such that $\left|\bigcup_{x \in \mathcal{X}} \mathcal{D}(x)\right|=|\mathcal{X}|$
- An edge $(v \rightarrow x)$ is arc inconsistent if and only if $v$ is in a Hall set and $x$ is not in the same SCC
- For instance: AllDifferent $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
- $\mathcal{D}\left(x_{1}\right)=\{1,2,3\}$
- $\mathcal{D}\left(x_{2}\right)=\{1,2,3\}$
- $\mathcal{D}\left(x_{3}\right)=\{1,2,3\}$
- $\mathcal{D}\left(x_{4}\right)=\{1,2,3,4\} \mathcal{D}\left(x_{4}\right)=\{4\}$
- $\{1,2,3\}$ is a Hall set, therefore $\{1,2,3\}$ are not viable for $x_{4}$
- We can use the Hall set as explanation clause:

$$
\begin{aligned}
& \left(s_{1,3} \wedge s_{2,3} \wedge s_{3,3}\right) \Longrightarrow \\
& \Longleftrightarrow \\
& \left(\neg s_{1,3} \vee \neg s_{2,3} \vee \neg s_{3,3} \vee \neg s_{4,3}\right)
\end{aligned}
$$

(i.e., if $x_{1} \leq 3$ and $x_{2} \leq 3$ and $x_{3} \leq 3$, then $x_{4}>3$ )

- Mapping between CSP variables and Boolean variables (can be implicit)
- Propagation of the original constraints is done via propagators (dedicated algorithms)
- Propagators generate explanation clauses, used to encode the conflict graph
- Learn First-UIP clauses with this conflict graph
- Propagate the learnt clauses via unit-propagation

