Algorithms for Computational Logic

Introduction

Emmanuel Hebrard (adapted from João Marques Silva, Inês Lynce and Vasco Manquinho)

(1) Extensions
(1) Extensions

- Pseudo Boolean Optimisation
- Cutting Planes Motivation

Facility Location Problem

Suppose that a company has to decide where to install new factories from n potential locations in order to be able to serve m clients.

Let c_{i} denote the cost for opening a factory at location i and let $d_{i j}$ denote the cost of serving client j from location i.

Provide a formulation that helps the administration to decide where to open the factories such that the overall costs (factory open and serving clients) are minimized.

Facility Location Problem

- Problem variables
- x_{i} : denotes if a factory is to be open at location i
- $y_{i j}$: denotes if client j is served from location i

$$
\begin{array}{lll}
\text { Minimize } & \sum_{i=1}^{n} c_{i} x_{i}+\sum_{i=1}^{n} \sum_{j=1}^{m} d_{i j} y_{i j} & \\
\text { Subject to } & \sum_{i=1}^{n} y_{i j}=1 & \forall j \in\{1 \ldots m\} \\
& x_{i}-y_{i j} \geq 0 & \forall i \in\{1 \ldots n\}, j \in\{1 \ldots m\} \\
& x_{i} \in\{0,1\}, y_{i j} \in\{0,1\} &
\end{array}
$$

Formulation

Minimize $\quad \sum_{j=1}^{n} c_{j} x_{j}$
Subject to

$$
\begin{array}{lll}
\sum_{j=1}^{n} a_{i j} x_{j} \quad\{\geq,=, \leq\} & b_{i} \\
x_{j} \in\{0,1\} & & \forall j \in\{1,2, \ldots, n\}
\end{array}
$$

- 0-1 Integer Linear Programming (0-1 ILP)

Pseudo-Boolean Optimization (PBO)

- If we identify $\{$ false, true $\}$ to $\{0,1\}$, a clause $(x \vee y \vee z)$ is equivalent to $x+y+z \geq 1$
- $(x \vee \bar{y} \vee z)$ is $x+(1-y)+z \geq 1$
- Not quite Integer Programming because the domain is Boolean
- Particular case

Algorithmic Solutions

- Integer Programming solvers are very powerful
- We are not going to discuss Integer Programming
- When there is a linear objective, MaxSAT can be a good approach (we will see MaxSAT)
- In some case, a CDCL-like algorithm can be better than IP
- Replace clauses by cutting planes

Combination of two constraints

$$
\begin{gathered}
\delta\left(\sum_{j=1}^{n} a_{j} x_{j} \leq b\right) \\
\frac{\delta^{\prime}\left(\sum_{j=1}^{n} a_{j}^{\prime} x_{j} \leq b^{\prime}\right)}{\delta \sum_{j=1}^{n} a_{j} x_{j}+\delta^{\prime} \sum_{j=1}^{n} a_{j}^{\prime} x_{j} \leq \delta b+\delta^{\prime} b^{\prime}}
\end{gathered}
$$

Rounding can also be applied

$$
\frac{\sum_{j=1}^{n} a_{j} x_{j} \leq b}{\sum_{j=1}^{n}\left\lfloor a_{j}\right\rfloor x_{j} \leq\lfloor b\rfloor}
$$

- The correctness of the rounding operation follows from $\lfloor x\rfloor+\lfloor y\rfloor \leq\lfloor x+y\rfloor$
- Hence, δ coefficients in cutting plane operations do not need to be integer. Rounding can be safely applied afterwards

Rounding Example

$$
\frac{0.5\left(3 x_{1}+2 x_{2}+x_{3}+2 x_{4}+x_{5} \leq 5\right)}{1.5 x_{1}+x_{2}+0.5 x_{3}+x_{4}+0.5 x_{5} \leq 2.5}
$$

After rounding: $x_{1}+x_{2}+x_{4} \leq 2$
Cutting Planes

- Cutting Planes generalize (p-simulate) CNF clause resolution

Example

$$
\begin{gathered}
\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \\
\left(x_{2} \vee x_{4} \vee \overline{x_{3}}\right) \\
\hline \overline{x_{1}} \vee x_{2} \vee x_{4}
\end{gathered}
$$

$$
\begin{aligned}
& \left(1-x_{1}\right)+x_{2}+x_{3} \geq 1 \\
& x_{2}+x_{4}+\left(1-x_{3}\right) \geq 1 \\
& \left(1-x_{1}\right) \geq 0 \\
& \begin{array}{rll}
x_{4} & \geq 0 & \\
\hline 2\left(1-x_{1}\right)+2 x_{2}+2 x_{4} & \geq 1 & \text { addition } \\
\hline\left(1-x_{1}\right)+x_{2}+x_{4} & \geq 1 & \text { division }
\end{array}
\end{aligned}
$$

- Cutting planes is a stronger proof system than resolution

Use of Cutting Planes

- Used in branch and bound algorithms for PBO
- And in the more general case of Integer Linear Programming (ILP)
- Very common at preprocessing (i.e., at the root node of the search tree)
- Algorithms that use cutting plane techniques during the search process are also known as branch and cut algorithms
- Other types of cutting planes exist (e.g., clique cuts)

Backtrack search with Cutting Plane learning

- DPLL-like algorithms for PBO can perform cutting plane learning instead of clause learning
- Replace clause resolution with cutting planes in implication graph analysis
- Important note: It is not guaranteed that the new constraint will be assertive

Backtrack search with Cutting Plane learning

Consider the following constraints:

$$
\begin{array}{lll}
c_{1}: & 3 x_{1}+x_{2}+x_{7}-2 x_{8} & \leq 3 \\
c_{2}: & -3 x_{1}+x_{3}+2 x_{7}+x_{9} & \leq 0 \\
c_{3}: & -x_{2}-x_{3}+x_{6} & \leq-1-1
\end{array}
$$

- Suppose you start with assignment $x_{8}=0$ at first decision level
- Next, you decide to assign $x_{6}=1$. What happens?
- Constraint propagation on c_{3} sets $x_{2}=1, x_{3}=1$
- Constraint propagation on c_{2} sets $x_{1}=1$
- Constraint c_{1} is violated
- Conflict in constraint c_{1}
- Start backward traversal of graph

$$
\begin{array}{lll}
c_{1}: & 3 x_{1}+x_{2}+x_{7}-2 x_{8} & \leq 3 \\
c_{2}: & -3 x_{1}+x_{3}+2 x_{7}+x_{9} & \leq 0 \\
c_{3}: & -x_{2}-x_{3}+x_{6} & \leq-1
\end{array}
$$

Conflict

Cutting plane between c_{1} and c_{2} to remove x_{1}

$$
\begin{array}{cc}
1\left(3 x_{1}+x_{2}+x_{7}-2 x_{8}\right. & \leq 3) \\
1\left(-3 x_{1}+x_{3}+2 x_{7}+x_{9}\right. & \leq 0) \\
\hline x_{2}+x_{3}+3 x_{7}-2 x_{8}+x_{9} \leq 3
\end{array}
$$

Cutting plane with c_{3} to remove x_{3}

$$
\begin{array}{ll}
1\left(x_{2}+x_{3}+3 x_{7}-2 x_{8}+x_{9}\right. & \leq 3) \\
1\left(-x_{2}+-x_{3}+x_{6}\right. & \leq-1) \\
\hline x_{6}+3 x_{7}-2 x_{8}+x_{9} \leq 2
\end{array}
$$

- Backward traversal to the decision variable x_{6}
- Learned constraint:

