
Algorithms for Computational Logic
Introduction

Emmanuel Hebrard (adapted from João Marques Silva, Inês Lynce and Vasco Manquinho)

1 / 23

Outline

1 The Complexity of SAT

2 The Tractability of SAT Fragments

2 / 23

Outline

1 The Complexity of SAT
P and NP
Cook-Levin Theorem

2 The Tractability of SAT Fragments
Tractable Fragments

The Complexity of SAT 3 / 23

P vs. NP

Cook-Levin Theorem

SAT is NP-complete

SAT is “at least as hard” as any problem in NP

▶ If there exists a polynomial algorithm for SAT then there exists one for every problem in NP

▶ If SAT ∈ P then NP = P

The Complexity of SAT 4 / 23

P and NP

Recall:

P

Set of problems that are solved by a polynomial Turing Machine (running in O(nc) time for a
constant c)

NP

Set of problems that are solved by a polynomial Non-determinist Turing Machine (running in
O(nc) time for a constant c)

The Complexity of SAT 5 / 23

NP-hardness

NP-hard problem

A problem Q is NP-hard if it is “at least as hard as the hardest problem in NP”: if Q can be
solved in O(T) time then any problem in NP can be solved in O(Tnc) time for some
constant c .

If an NP-hard problem can be solved in polynomial time, then P = NP

NP-complete problem

A problem Q is NP-complete if it is NP-hard and is in NP

The Complexity of SAT 6 / 23

Turing Machines

. . . 0 1 1 0 0 0 0 0 . . . Infinite tape

q1

An infinite tape, where we can read/write the symbols 0 and 1 and a head

A “program”

▶ A finite set of states with an initial state q0 and a final state qf .

▶ A transition table associating a triplet ⟨ state, symbol, {←,→} ⟩ to every pair ⟨ state, symbol ⟩

Meaning: “if reading symbol x in state q then write x ′, change to state q′ and move right/left”

The Complexity of SAT 7 / 23

Turing Machines, example

. . . 0 1 1 0 0 0 0 0 . . . Infini tape

q0

état
symbol

0 1

q0 qf , 0, ∗ q1, 0,→
q1 q2, 0,→ q1, 1,→
q2 q3, 1,← q2, 1,→
q3 q4, 0,← q3, 1,←
q4 q0, 1,→ q4, 1,←

The Complexity of SAT 9 / 23

Non-determinist Turing Machines

A non-determinist Turing Machine can have several transitions in the same configuration

We assume that it makes the right choice (or explore all possible choices in parallel)

It is sufficient to have up two transitions for any one configuration

état
symbol

0 1

q0 qf , 0, ∗ q1, 0,→

q1
q2, 0,→ ou

q1, 1,→q4, 1,←
q2 q3, 1,← q2, 1,→
q3 q4, 0,← q3, 1,←
q4 q0, 1,→ q4, 1,←

The Complexity of SAT 10 / 23

Proof of the Cook-Levin theorem (1)

Consider a problem Q and a Turing machine that solves it in polynomial

time: O(nc) pour une donnée de taille n

This machine executes O(nc) instructions and therefore requires a tape

of length O(nc)

We build the propositional logic formula with the following variables:

▶ A variable Ri,t for every cell i of the tape, every symbol k and every time step t: true iff the

symbol v written on cell i at time t is k (O(1) symbols, hence O(n2c) variables)

▶ A variable Li,t for every cell i of the tape and every time step t: true iff the head is at

position i at time t (O(n2c) variables)

▶ A variable Qj,t for every state qj of the program and every time step t: true iff the machine

is in state qj at time t (O(1) states, hence O(nc) variables)

état
symbol

00 1
q0 qf , 0, ∗ q1, 0,→
q1 q2, 0,→ q1, 1,→

q2q2 q3, 1,←q3, 1,← q2, 1,→
q3 q4, 0,← q3, 1,←
q4 q0, 1,→ q4, 1,←

For a transition (q2, 0) =⇒ (q3, 1,←),
we add the following clauses, for all i and
all t:

▶ Q2,t ∧ Li,t ∧ Ri,0,t ⇒ Q3,t+1
▶ Q2,t ∧ Li,t ∧ Ri,0,t ⇒ Li−1,t+1
▶ Q2,t ∧ Li,t ∧ Ri,0,t ⇒ Ri,1,t+1

Θ(nc) other clauses

The Complexity of SAT 11 / 23

Proof of the Cook-Levin theorem (2)

Consider a problem Q ∈ P

Q admits a Turing machine that runs in O(|x |c1) time

For any input x , there exists a Horm Forumla ϕ(Q, x) such that:

▶ ϕ(Q, x) is satisfiable if and only if Q(x) = true

▶ |ϕ(Q, x)| ∈ O(|x |c2)

An algorithm for Horn-SAT can solve any problem in P in polynomial time

▶ Not so useful in itself (though Horn-SAT is P-complete for log space reductions)

The Complexity of SAT 12 / 23

Proof of the Cook-Levin theorem (3)

Can we come up with a similar encoding for non-deterministic machines ?

état
symbol

0 1
q0 qf , 0, ∗ q1, 0,→
q1 q2, 0,→ q1, 1,→

q2
q3, 1,← q2, 1,→q4, 0,→

q3 q4, 0,← q3, 1,←
q4 q0, 1,→ q4, 1,←

There are O(1) non-deterministic transitions (in the
program)

We add a variable Xl,t for every non-deterministic
transition l and for every time t

The transition clauses become:
▶ Xl,t ∧ Q2,t ∧ Li,t ∧ Ri,0,t ⇒ Q3,t+1
▶ Xl,t ∧ Q2,t ∧ Li,t ∧ Ri,0,t ⇒ Li−1,t+1
▶ Xl,t ∧ Q2,t ∧ Li,t ∧ Ri,0,t ⇒ Ri,1,t+1
▶ ¬Xl,t ∧ Q2,t ∧ Li,t ∧ Ri,0,t ⇒ Q4,t+1
▶ ¬Xl,t ∧ Q2,t ∧ Li,t ∧ Ri,0,t ⇒ Li+1,t+1
▶ ¬Xl,t ∧ Q2,t ∧ Li,t ∧ Ri,0,t ⇒ Ri,0,t+1

They are not Horn anymore
Otherwise we would have shown P = NP!

The Complexity of SAT 13 / 23

Proof of the Cook-Levin theorem (conclusion)

Preuve

Consider a problem Q ∈ P

Q admits a non-determinist Turing machine that runs in O(|x |c1) time

For any input x there exists a Boolean formula ϕ(Q, x) such that:

▶ ϕ(Q, x) is satisfiable if and only if x ∈ true(Q) et |ϕ(Q, x)| ∈ O(|x |c2)

All problems in NP reduce to SAT

▶ If SAT is in P, then all problems in NP can be solved in polynomial time and therefore P = NP
▶ If SAT is not in P, then P ̸= NP

Si SAT ∈ P alors on peut trouver une interprétation de ϕ(Q, x) en temps polynomial, et donc résoudre Q en
temps polynomial, quel que soit Q ∈ NP

Donc SAT ∈ P implique P = NP!

The Complexity of SAT 14 / 23

Outline

1 The Complexity of SAT
P and NP
Cook-Levin Theorem

2 The Tractability of SAT Fragments
Tractable Fragments

The Tractability of SAT Fragments 15 / 23

k-SAT

SAT is NP-complete (Cook’s theorem)

3-SAT is hard: Exercise

▶ Encoding:
(p1 ∨ p2 ∨ x) ∧ (¬x ∨ p3 ∨ . . . ∨ pk) ⇐⇒ (p1 ∨ p2 ∨ . . . ∨ pk)

2-SAT is easy (Resolution)

Horn-SAT is easy (Unit propagation)

The Tractability of SAT Fragments 16 / 23

Intermediate Problems

Ladner’s Theorem

If P = NP, then there are problems in NP that are neither in P nor NP-complete.

For instance GraphIsomorphism may be such problem; or Factorisation

What about fragments of SAT?

▶ We know some are easy (2-SAT, Horn-SAT), are there others?

▶ How do we know which ones are hard and which ones are easy?

▶ Are there some in the intermediate class?

The Tractability of SAT Fragments 17 / 23

Constraint Satisfaction Problems (reminder)

Constraint Satisfaction Problem (CSP)

Data: a triplet (X ,D, C) where:
X is a ordered set of variables

D is a domain

C is a set of constraints, where for c ∈ C:
▶ its scope S(c) is a list of variables
▶ its relation R(c) is a subset of D|S(c)|

Question: does there exist a solution σ ∈ D|X |
such that for every c ∈ C, σ(S(c)) ∈ R(c)?

Projection

The projection σ(X) of a tuple σ on a set
of variables X = (xi1 , . . . , xik) ⊆ X as the
tuple (σ(xi1), . . . , σ(xik))

Example: the constraint x + y = z (on the
Boolean ring)

x y z S(x + y = z)

0 0 0

R(x + y = z)
0 1 1
1 0 1
1 1 0

The Tractability of SAT Fragments 18 / 23

CNF and Generalized Relations

A relation R(c) over some variables can easily be expressed in clausal form

Each clause excludes exactly one tuple, example: x + y + z ̸= 2

x + y + z ̸= 2 x + y + z = 2 ⇐⇒ CNF
x y z x y z

0 0 0 0 1 1 (x̄ ∧ y ∧ z)∨ (x ∨ ȳ ∨ z̄)∧
0 0 1 1 0 1 (x ∧ ȳ ∧ z)∨ (x̄ ∨ y ∨ z̄)∧
0 1 0 1 1 0 (x ∧ y ∧ z̄)∨ (x̄ ∨ ȳ ∨ z)∧
1 0 0
1 1 1

A clause is a particular case of relation on the Boolean domain

The Tractability of SAT Fragments 19 / 23

CSP Fragments

We can define fragments of CSP via restrictions on the domain, the structure or on the language

▶ Domain: Boolean CSPs: D = {0, 1}, Three-valued CSPs, CSP on Z, etc.

▶ Structure: e.g., the incidence graph (bipartite graph variables / constraints) is a tree or has a bounded treewidth

▶ Language: the library of relations is restricted to a given set Γ

Language fragment

CSP(Γ) is the problem of deciding the satisfiability of a CSP whose constraints all have
relations in Γ.

For instance Three-valued CSP({̸=}) is NP-hard since 3-Coloration is NP-hard

The Tractability of SAT Fragments 20 / 23

Definability

pp-definability

A relation R over x1, . . . , xk on domain D is (pp-)definable from a set of relation Γ if and only
if there exists a CSP N = (X ,D, C) such that:

{x1, . . . , xk} ⊆ X
c ∈ C =⇒ R(c) ∈ Γ ∪ {=}
R(x1, . . . , xk) ⇐⇒ (x1, . . . , xk) can be extended to a solution of N

i.e., the relation R can be encoded using relations in Γ

▶ < is definable from {≤, ̸=}

▶ A k-clause (p1 ∨ . . . ∨ pk) is definable from 3-clauses

▶ All k-ary relations are definable from k-clauses

The Tractability of SAT Fragments 21 / 23

Closure

Closure

≪ Γ≫ is the set of relations that are definable from Γ

CSP(Γ) and CSP(≪ Γ ≫) have the same complexity

Boolean CSPs whose incidence graph is such that constraints vertices have degree 2 (constraints are on at
most 2 variables) is in P

▶ Any binary relation is definable by binary clauses

▶ If Γ is the languages composed of 2-clauses, {(x ∨ y), (x̄ ∨ y), (x̄ ∨ ȳ)}, then:

⋆ CSP(Γ) is 2−SAT

⋆ CSP(≪ Γ ≫) is “Boolean binary CSP”

The Tractability of SAT Fragments 22 / 23

Schaefer’s Dichotomy Theorem

Schaefer’s Theorem

Boolean CSP(≪ Γ≫) is in P if:

Γ are 2-clauses

Γ are Horn-clauses

Γ are dual Horn-clauses

Γ = {⊕} (i.e., XOR. Also known as “Affine-SAT”)

Every relation in Γ accepts the tuple with only 0

Every relation in Γ accepts the tuple with only 1

and is NP-hard otherwise

Dichotomy: we know the complexity of all the language-based fragments of SAT, and none of them is an
intermediate problem

The Tractability of SAT Fragments 23 / 23

	The Complexity of SAT
	P and NP
	Cook-Levin Theorem

	The Tractability of SAT Fragments
	Tractable Fragments

