Algorithms for Computational Logic

Introduction

Emmanuel Hebrard (adapted from João Marques Silva, Inês Lynce and Vasco Manquinho)

(1) The Complexity of SAT
(2) The Tractability of SAT Fragments
(1) The Complexity of SAT

- \mathbf{P} and NP
- Cook-Levin Theorem

(2) The Tractability of SAT Fragments
 - Tractable Fragments

P vs. NP

Cook-Levin Theorem
 SAT is NP-complete

- SAT is "at least as hard" as any problem in NP
- If there exists a polynomial algorithm for SAT then there exists one for every problem in NP
- If $S A T \in \mathbf{P}$ then $\mathbf{N P}=\mathbf{P}$
- Recall:

P

Set of problems that are solved by a polynomial Turing Machine (running in $\mathcal{O}\left(n^{c}\right)$ time for a constant c)

NP

Set of problems that are solved by a polynomial Non-determinist Turing Machine (running in $\mathcal{O}\left(n^{c}\right)$ time for a constant c) NP-hardness

NP-hard problem

A problem Q is NP-hard if it is "at least as hard as the hardest problem in NP": if Q can be solved in $\mathcal{O}(T)$ time then any problem in NP can be solved in $\mathcal{O}\left(T n^{c}\right)$ time for some constant c.

- If an NP-hard problem can be solved in polynomial time, then $\mathbf{P}=\mathbf{N P}$

NP-complete problem

A problem Q is NP-complete if it is NP-hard and is in NP

- An infinite tape, where we can read/write the symbols 0 and 1 and a head
- A "program"
- A finite set of states with an initial state q_{0} and a final state q_{f}.
- A transition table associating a triplet \langle state, symbol, $\{\leftarrow, \rightarrow\}\rangle$ to every pair \langle state, symbol \rangle
- Meaning: "if reading symbol x in state q then write x^{\prime}, change to state q^{\prime} and move right/left"

état	symbol	
	0	1
q_{0}	$q_{f}, 0, *$	$q_{1}, 0, \rightarrow$
q_{1}	$q_{2}, 0, \rightarrow$	$q_{1}, 1, \rightarrow$
q_{2}	$q_{3}, 1, \leftarrow$	$q_{2}, 1, \rightarrow$
q_{3}	$q_{4}, 0, \leftarrow$	$q_{3}, 1, \leftarrow$
q_{4}	$q_{0}, 1, \rightarrow$	$q_{4}, 1, \leftarrow$

Non-determinist Turing Machines

- A non-determinist Turing Machine can have several transitions in the same configuration
- We assume that it makes the right choice (or explore all possible choices in parallel)
- It is sufficient to have up two transitions for any one configuration

état	symbol	
	0	1
q_{0}	$q_{f}, 0, *$	$q_{1}, 0, \rightarrow$
q_{1}	$q_{2}, 0, \rightarrow$ ou $q_{4}, 1, \leftarrow$	$q_{1}, 1, \rightarrow$
q_{2}	$q_{3}, 1, \leftarrow$	$q_{2}, 1, \rightarrow$
q_{3}	$q_{4}, 0, \leftarrow$	$q_{3}, 1, \leftarrow$
q_{4}	$q_{0}, 1, \rightarrow$	$q_{4}, 1, \leftarrow$

Proof of the Cook-Levin theorem (1)

- Consider a problem Q and a Turing machine that solves it in polynomial time: $\mathcal{O}\left(n^{c}\right)$ pour une donnée de taille n
- This machine executes $\mathcal{O}\left(n^{c}\right)$ instructions and therefore requires a tape of length $\mathcal{O}\left(n^{c}\right)$
- We build the propositional logic formula with the following variables:
- A variable $R_{i, t}$ for every cell i of the tape, every symbol k and every time step t : true iff the symbol \mathbf{v} written on cell i at time t is $k\left(\mathcal{O}(1)\right.$ symbols, hence $\mathcal{O}\left(n^{2 c}\right)$ variables)
- A variable $L_{i, t}$ for every cell i of the tape and every time step t : true iff the head is at position i at time $t\left(\mathcal{O}\left(n^{2 c}\right)\right.$ variables $)$
- A variable $Q_{j, t}$ for every state q_{j} of the program and every time step t : true iff the machine is in state q_{j} at time $t\left(\mathcal{O}(1)\right.$ states, hence $\mathcal{O}\left(n^{c}\right)$ variables $)$

état	symbol	
	00	1
q_{0}	$q_{f}, 0, *$	$q_{1}, 0, \rightarrow$
q_{1}	$q_{2}, 0, \rightarrow$	$q_{1}, 1, \rightarrow$
$q_{2} q_{2}$	$q_{3}, 1, \leftarrow q_{3}, 1, \leftarrow$	$q_{2}, 1, \rightarrow$
q_{3}	$q_{4}, 0, \leftarrow$	$q_{3}, 1, \leftarrow$
q_{4}	$q_{0}, 1, \rightarrow$	$q_{4}, 1, \leftarrow$

- For a transition $\left(q_{2}, 0\right) \Longrightarrow\left(q_{3}, 1, \leftarrow\right)$, we add the following clauses, for all i and all t :
- $Q_{2, t} \wedge L_{i, t} \wedge R_{i, 0, t} \Rightarrow Q_{3, t+1}$
- $Q_{2, t} \wedge L_{i, t} \wedge R_{i, 0, t} \Rightarrow L_{i-1, t+1}$
- $Q_{2, t} \wedge L_{i, t} \wedge R_{i, 0, t} \Rightarrow R_{i, 1, t+1}$
- $\Theta\left(n^{c}\right)$ other clauses
- Consider a problem $Q \in \mathbf{P}$
- Q admits a Turing machine that runs in $\mathcal{O}\left(|x|^{c_{1}}\right)$ time
- For any input x, there exists a Horm Forumla $\phi(Q, x)$ such that:
- $\phi(Q, x)$ is satisfiable if and only if $Q(x)=$ true
- $|\phi(Q, x)| \in \mathcal{O}\left(|x|^{c_{2}}\right)$
- An algorithm for Horn-SAT can solve any problem in \mathbf{P} in polynomial time
- Not so useful in itself (though Horn-SAT is P-complete for log space reductions)

Proof of the Cook-Levin theorem (3)

- Can we come up with a similar encoding for non-deterministic machines ?

état	symbol	
	0	1
q_{0}	$q_{f}, 0, *$	$q_{1}, 0, \rightarrow$
q_{1}	$q_{2}, 0, \rightarrow$	$q_{1}, 1, \rightarrow$
q_{2}	$q_{3}, 1, \leftarrow$	$q_{2}, 1, \rightarrow$
	$q_{4}, 0, \rightarrow$	q_{2}, \rightarrow
q_{3}	$q_{4}, 0, \leftarrow$	$q_{3}, 1, \leftarrow$
q_{4}	$q_{0}, 1, \rightarrow$	$q_{4}, 1, \leftarrow$

- There are $\mathcal{O}(1)$ non-deterministic transitions (in the program)
- We add a variable $X_{l, t}$ for every non-deterministic transition $/$ and for every time t
- The transition clauses become:
- $X_{l, t} \wedge Q_{2, t} \wedge L_{i, t} \wedge R_{i, 0, t} \Rightarrow Q_{3, t+1}$
- $X_{l, t} \wedge Q_{2, t} \wedge L_{i, t} \wedge R_{i, 0, t} \Rightarrow L_{i-1, t+1}$
- $X_{l, t} \wedge Q_{2, t} \wedge L_{i, t} \wedge R_{i, 0, t} \Rightarrow R_{i, 1, t+1}$
- $\neg X_{1, t} \wedge Q_{2, t} \wedge L_{i, t} \wedge R_{i, 0, t} \Rightarrow Q_{4, t+1}$
- $\neg X_{I, t} \wedge Q_{2, t} \wedge L_{i, t} \wedge R_{i, 0, t} \Rightarrow L_{i+1, t+1}$
- $\neg X_{l, t} \wedge Q_{2, t} \wedge L_{i, t} \wedge R_{i, 0, t} \Rightarrow R_{i, 0, t+1}$
- They are not Horn anymore

Otherwise we would have shown $\mathbf{P}=\mathbf{N P}$!

Proof of the Cook-Levin theorem (conclusion)

Preuve

- Consider a problem $Q \in \mathbf{P}$
- Q admits a non-determinist Turing machine that runs in $\mathcal{O}\left(|x|^{c_{1}}\right)$ time
- For any input x there exists a Boolean formula $\phi(Q, x)$ such that:
- $\phi(Q, x)$ is satisfiable if and only if $x \in \operatorname{true}(Q)$ et $|\phi(Q, x)| \in \mathcal{O}\left(|x|^{c_{2}}\right)$
- All problems in NP reduce to SAT
- If SAT is in \mathbf{P}, then all problems in NP can be solved in polynomial time and therefore $\mathbf{P}=\mathbf{N P}$
- If SAT is not in \mathbf{P}, then $\mathbf{P} \neq \mathbf{N P}$
- Si $S A T \in \mathbf{P}$ alors on peut trouver une interprétation de $\phi(Q, x)$ en temps polynomial, et donc résoudre Q en temps polynomial, quel que soit $Q \in \mathbf{N P}$
- Donc $S A T \in \mathbf{P}$ implique $\mathbf{P}=\mathbf{N P}$!
Outline
(1) The Complexity of SAT - \mathbf{P} and NP
- Cook-Levin Theorem
(2) The Tractability of SAT Fragments
- Tractable Fragments
k-SAT
- SAT is NP-complete (Cook's theorem)
- 3-SAT is hard: Exercise
- Encoding:

$$
\left(p_{1} \vee p_{2} \vee x\right) \wedge\left(\neg x \vee p_{3} \vee \ldots \vee p_{k}\right) \Longleftrightarrow\left(p_{1} \vee p_{2} \vee \ldots \vee p_{k}\right)
$$

- 2-SAT is easy (Resolution)
- Horn-SAT is easy (Unit propagation)

Ladner's Theorem

If $\mathbf{P}=\mathbf{N P}$, then there are problems in $\mathbf{N P}$ that are neither in \mathbf{P} nor $\mathbf{N P}$-complete.

- For instance GraphIsomorphism may be such problem; or Factorisation
- What about fragments of SAT?
- We know some are easy (2-SAT, Horn-SAT), are there others?
- How do we know which ones are hard and which ones are easy?
- Are there some in the intermediate class?

Constraint Satisfaction Problem (CSP)

Data: a triplet $(\mathcal{X}, \mathcal{D}, \mathcal{C})$ where:

- \mathcal{X} is a ordered set of variables
- \mathcal{D} is a domain
- \mathcal{C} is a set of constraints, where for $c \in \mathcal{C}$:
- its scope $S(c)$ is a list of variables
- its relation $R(c)$ is a subset of $\mathcal{D}^{|S(c)|}$

Question: does there exist a solution $\sigma \in \mathcal{D}^{|\mathcal{X}|}$ such that for every $c \in \mathcal{C}, \sigma(S(c)) \in R(c)$?

Projection

The projection $\sigma(X)$ of a tuple σ on a set of variables $X=\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) \subseteq \mathcal{X}$ as the tuple $\left(\sigma\left(x_{i_{1}}\right), \ldots, \sigma\left(x_{i_{k}}\right)\right)$

- Example: the constraint $x+y=z$ (on the Boolean ring)

x	y	z	$S(x+y=z)$
0	0	0	
0	1	1	$R(x+y=z)$
1	0	1	
1	1	0	

CNF and Generalized Relations

- A relation $R(c)$ over some variables can easily be expressed in clausal form
- Each clause excludes exactly one tuple, example: $x+y+z \neq 2$

$x+y+z \neq 2$					$x+y+z=2$		\Longleftrightarrow
x	y	z	x	y	z	\Longleftrightarrow	CNF
0	0	0	0	1	1	$(\bar{x} \wedge y \wedge z) \vee$	$(x \vee \bar{y} \vee \bar{z}) \wedge$
0	0	1	1	0	1	$(x \wedge \bar{y} \wedge z) \vee$	$(\bar{x} \vee y \vee \bar{z}) \wedge$
0	1	0	1	1	0	$(x \wedge y \wedge \bar{z}) \vee$	$(\bar{x} \vee \bar{y} \vee z) \wedge$
1	0	0					
1	1	1					

- A clause is a particular case of relation on the Boolean domain CSP Fragments
- We can define fragments of CSP via restrictions on the domain, the structure or on the language
- Domain: Boolean CSPs: $\mathcal{D}=\{0,1\}$, Three-valued CSPs, CSP on \mathbb{Z}, etc.
- Structure: e.g., the incidence graph (bipartite graph variables / constraints) is a tree or has a bounded treewidth
- Language: the library of relations is restricted to a given set Γ

Language fragment

$\operatorname{CSP}(\Gamma)$ is the problem of deciding the satisfiability of a CSP whose constraints all have relations in Γ.

- For instance Three-valued $\operatorname{CSP}(\{\neq\})$ is NP-hard since 3-Coloration is NP-hard

pp-definability

A relation R over x_{1}, \ldots, x_{k} on domain \mathcal{D} is ($p p$-)definable from a set of relation Γ if and only if there exists a $\operatorname{CSP} \mathcal{N}=(\mathcal{X}, \mathcal{D}, \mathcal{C})$ such that:

- $\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathcal{X}$
- $c \in \mathcal{C} \Longrightarrow R(c) \in \Gamma \cup\{=\}$
- $R\left(x_{1}, \ldots, x_{k}\right) \Longleftrightarrow\left(x_{1}, \ldots, x_{k}\right)$ can be extended to a solution of \mathcal{N}
- i.e., the relation R can be encoded using relations in Γ
- $<$ is definable from $\{\leq, \neq\}$
- A k-clause $\left(p_{1} \vee \ldots \vee p_{k}\right)$ is definable from 3-clauses
- All k-ary relations are definable from k-clauses

Closure

$\ll \Gamma>$ is the set of relations that are definable from Γ

－ $\operatorname{CSP}(\Gamma)$ and $\operatorname{CSP}(\ll \Gamma \gg)$ have the same complexity
－Boolean CSPs whose incidence graph is such that constraints vertices have degree 2 （constraints are on at most 2 variables）is in \mathbf{P}
－Any binary relation is definable by binary clauses
－If Γ is the languages composed of 2－clauses，$\{(x \vee y),(\bar{x} \vee y),(\bar{x} \vee \bar{y})\}$ ，then：
$\star \operatorname{CSP}(\Gamma)$ is $2-S A T$
＊ $\operatorname{CSP}(\ll \Gamma \gg)$ is＂Boolean binary CSP＂

CNRS

Schaefer＇s Dichotomy Theorem

Schaefer＇s Theorem

Boolean $\operatorname{CSP}(\ll \Gamma>)$ is in \mathbf{P} if：

- 「 are 2－clauses
- 「 are Horn－clauses
- 「 are dual Horn－clauses
－$\Gamma=\{\oplus\}$（i．e．，XOR．Also known as＂Affine－SAT＂）
- Every relation in 「 accepts the tuple with only 0
- Every relation in 「 accepts the tuple with only 1

and is NP－hard otherwise

－Dichotomy：we know the complexity of all the language－based fragments of SAT，and none of them is an intermediate problem

