

Algorithms for Computational Logic

Introduction

Emmanuel Hebrard (adapted from João Marques Silva, Inês Lynce and Vasco Manquinho)

Outline

- lacktriangle The Complexity of SAT
- **2** The Tractability of SAT Fragments

- lacktriangle The Complexity of SAT
 - \bullet P and NP
 - Cook-Levin Theorem
- The Tractability of SAT Fragments
 - Tractable Fragments

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

P vs. NP

Cook-Levin Theorem

 SAT is $\operatorname{\mathbf{NP}}$ -complete

- $\bullet \ \mathrm{SAT}$ is "at least as hard" as any problem in \mathbf{NP}
 - ▶ If there exists a polynomial algorithm for SAT then there exists one for every problem in NP
 - ▶ If $SAT \in \mathbf{P}$ then $\mathbf{NP} = \mathbf{P}$

Recall:

P

Set of problems that are solved by a *polynomial Turing Machine* (running in $\mathcal{O}(n^c)$ time for a constant c)

NP

Set of problems that are solved by a polynomial *Non-determinist* Turing Machine (running in $\mathcal{O}(n^c)$ time for a constant c)

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

The Complexity of SAT

E / 22

NP-hardness

NP-hard problem

A problem Q is \mathbf{NP} -hard if it is "at least as hard as the hardest problem in \mathbf{NP} ": if Q can be solved in $\mathcal{O}(T)$ time then any problem in \mathbf{NP} can be solved in $\mathcal{O}(Tn^c)$ time for some constant c.

ullet If an NP-hard problem can be solved in polynomial time, then P=NP

NP-complete problem

A problem Q is \mathbf{NP} -complete if it is \mathbf{NP} -hard and is in \mathbf{NP}

- An infinite tape, where we can read/write the symbols 0 and 1 and a head
- A "program"
 - ▶ A finite set of **states** with an initial state q_0 and a final state q_f .
 - lacktriangle A transition table associating a triplet \langle state, symbol, $\{\leftarrow, \rightarrow\}$ \rangle to every pair \langle state, symbol \rangle
- Meaning: "if reading symbol x in state q then write x', change to state q' and move right/left"

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

The Complexity of SAT

7 / 22

Turing Machines, example

état	symbol		
etat	0	1	
q_0	$q_f, 0, *$	$\boxed{q_1,0,\rightarrow}$	
q_1	$q_2, 0, \rightarrow$	$q_1,1, ightarrow$	
q_2	$q_3, 1, \leftarrow$	$q_2,1, ightarrow$	
q 3	$q_4, 0, \leftarrow$	$q_3, 1, \leftarrow$	
q_4	$q_0,1, ightarrow$	$q_4, 1, \leftarrow$	

- A non-determinist Turing Machine can have several transitions in the same configuration
- We assume that it makes the right choice (or explore all possible choices in parallel)
- It is sufficient to have up two transitions for any one configuration

état	symbol		
	0	1	
q_0	$q_f, 0, *$	$q_1,0, ightarrow$	
q_1	$q_2,0, o$ ou $q_4,1,\leftarrow$	$q_1,1,\rightarrow$	
q_2	$q_3, 1, \leftarrow$	$q_2,1, ightarrow$	
q 3	$q_4,0,\leftarrow$	$q_3, 1, \leftarrow$	
q_4	$q_0,1,\rightarrow$	$q_4, 1, \leftarrow$	

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

The Complexity of SAT

10 / 23

Proof of the Cook-Levin theorem (1)

- Consider a problem Q and a Turing machine that solves it in polynomial time: $\mathcal{O}(n^c)$ pour une donnée de taille n
- This machine executes $\mathcal{O}(n^c)$ instructions and therefore requires a tape of length $\mathcal{O}(n^c)$
- We build the propositional logic formula with the following variables:
 - A variable $R_{i,t}$ for every cell i of the tape, every symbol k and every time step t: true iff the symbol \mathbf{v} written on cell i at time t is k ($\mathcal{O}(1)$ symbols, hence $\mathcal{O}(n^{2c})$ variables)
 - A variable $L_{i,t}$ for every cell i of the tape and every time step t: true iff the head is at position i at time t ($\mathcal{O}(n^{2c})$ variables)
 - A variable $Q_{j,t}$ for every state q_j of the program and every time step t: true iff the machine is in state q_i at time t ($\mathcal{O}(1)$ states, hence $\mathcal{O}(n^c)$ variables)

état	symbol	
етат	00	1
q_0	$q_f, 0, *$	$q_1,0, ightarrow$
q_1	$q_2,0, ightarrow$	$q_1,1,\rightarrow$
q 2 q 2	$q_3, 1, \leftarrow q_3, 1, \leftarrow$	$q_2,1,\rightarrow$
q ₃	$q_4,0,\leftarrow$	$q_3, 1, \leftarrow$
q_4	$q_0,1,\rightarrow$	$q_4, 1, \leftarrow$

- For a transition $(q_2, 0) \implies (q_3, 1, \leftarrow)$, we add the following clauses, for all i and all t:

 - $ightharpoonup Q_{2,t} \wedge L_{i,t} \wedge R_{i,0,t} \Rightarrow L_{i-1,t+1}$
 - $ightharpoonup Q_{2,t} \wedge L_{i,t} \wedge R_{i,0,t} \Rightarrow R_{i,1,t+1}$
- $\Theta(n^c)$ other clauses

Proof of the Cook-Levin theorem (2)

- Consider a problem $Q \in \mathbf{P}$
- Q admits a Turing machine that runs in $\mathcal{O}(|x|^{c_1})$ time
- For any input x, there exists a Horm Forumla $\phi(Q,x)$ such that:
 - $\phi(Q,x)$ is satisfiable if and only if $Q(x) = \mathbf{true}$
 - $|\phi(Q,x)| \in \mathcal{O}(|x|^{c_2})$
- An algorithm for *Horn*-SAT can solve any problem in **P** in polynomial time
 - ▶ Not so useful in itself (though *Horn*-SAT is **P**-complete for log space reductions)

AS-CNRS aboratoire d'analyse et d'architecture des systèmes du CNRS

Proof of the Cook-Levin theorem (3)

Can we come up with a similar encoding for *non-deterministic* machines ?

état	symbol		
етат	0	1	
q 0	$q_f, 0, *$	$q_1,0,\rightarrow$	
q_1	$q_2, 0, ightarrow$	$q_1,1,\rightarrow$	
q 2	$q_3, 1, \leftarrow$	$q_2,1, ightarrow$	
42	$q_4,0, ightarrow$	42, 1,	
q 3	$q_4, 0, \leftarrow$	$q_3, 1, \leftarrow$	
q_4	$q_0,1,\rightarrow$	$q_4, 1, \leftarrow$	

- There are $\mathcal{O}(1)$ non-deterministic transitions (in the program)
- We add a variable $X_{l,t}$ for every non-deterministic transition I and for every time t
- The transition clauses become:

 - $ightharpoonup \neg X_{i,t} \wedge Q_{2,t} \wedge L_{i,t} \wedge R_{i,0,t} \Rightarrow R_{i,0,t+1}$
- They are not Horn anymore Otherwise we would have shown P = NP!

AAS CNRS

Proof of the Cook-Levin theorem (conclusion)

Preuve

- Consider a problem $Q \in \mathbf{P}$
- Q admits a non-determinist Turing machine that runs in $\mathcal{O}(|x|^{c_1})$ time
- For any input x there exists a Boolean formula $\phi(Q, x)$ such that:
 - $\phi(Q,x)$ is satisfiable if and only if $x \in \mathbf{true}(Q)$ et $|\phi(Q,x)| \in \mathcal{O}(|x|^{c_2})$
- All problems in **NP** reduce to SAT
 - ightharpoonup If SAT is in ${f P}$, then all problems in ${f NP}$ can be solved in polynomial time and therefore ${f P}={f NP}$
 - ▶ If SAT is not in **P**, then $P \neq NP$
- Si $SAT \in \mathbf{P}$ alors on peut trouver une interprétation de $\phi(Q, x)$ en temps polynomial, et donc résoudre Q en temps polynomial, quel que soit $Q \in \mathbf{NP}$
- Donc $SAT \in \mathbf{P}$ implique $\mathbf{P} = \mathbf{NP}!$

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Outline

- f 1 The Complexity of SAT
 - P and NP
 - Cook-Levin Theorem
- 2 The Tractability of SAT Fragments
 - Tractable Fragments

- SAT is **NP**-complete (Cook's theorem)
- 3-SAT is hard: **Exercise**
 - ► Encoding:

$$(p_1 \vee p_2 \vee x) \wedge (\neg x \vee p_3 \vee \ldots \vee p_k) \iff (p_1 \vee p_2 \vee \ldots \vee p_k)$$

- 2-SAT is easy (Resolution)
- *Horn*-SAT is easy (Unit propagation)

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Intermediate Problems

Ladner's Theorem

If P = NP, then there are problems in NP that are neither in P nor NP-complete.

- For instance GraphIsomorphism may be such problem; or Factorisation
- What about fragments of SAT?
 - ▶ We know some are easy (2-SAT, *Horn*-SAT), are there others?
 - How do we know which ones are hard and which ones are easy?
 - ▶ Are there some in the intermediate class?

Constraint Satisfaction Problem (CSP)

Data: a triplet $(\mathcal{X}, \mathcal{D}, \mathcal{C})$ where:

- \bullet \mathcal{X} is a ordered set of *variables*
- ullet \mathcal{D} is a domain
- C is a set of *constraints*, where for $c \in C$:
 - ightharpoonup its scope S(c) is a list of variables
 - its relation R(c) is a subset of $\mathcal{D}^{|S(c)|}$

Question: does there exist a solution $\sigma \in \mathcal{D}^{|\mathcal{X}|}$ such that for every $c \in \mathcal{C}$, $\sigma(S(c)) \in R(c)$?

Projection

The projection $\sigma(X)$ of a tuple σ on a set of variables $X = (x_{i_1}, \ldots, x_{i_k}) \subseteq \mathcal{X}$ as the tuple $(\sigma(x_{i_1}), \ldots, \sigma(x_{i_k}))$

• Example: the constraint x + y = z (on the Boolean ring)

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

The Tractability of SAT Fragments

10 / 22

CNF and **Generalized Relations**

- ullet A relation R(c) over some variables can easily be expressed in clausal form
- ullet Each clause excludes exactly one tuple, example: x+y+z
 eq 2

x +	y + z	$z \neq 2$	x +	y + z	z=2	\iff	CNF
X	У	Z	X	У	Z	7	CIVI
0	0	0	0	1	1	$(\bar{x} \wedge y \wedge z) \vee$	$(x \vee \bar{y} \vee \bar{z}) \wedge$
0	0	1	1	0	1	$(x \wedge \bar{y} \wedge z) \vee$	$(\bar{x} \vee y \vee \bar{z}) \wedge$
0	1	0	1	1	0	$(x \wedge y \wedge \bar{z}) \vee$	$(\bar{x} \vee \bar{y} \vee z) \wedge$
1	0	0					
1	1	1					

• A clause is a particular case of relation on the Boolean domain

- We can define fragments of CSP via restrictions on the domain, the structure or on the language
 - ▶ **Domain**: Boolean CSPs: $\mathcal{D} = \{0, 1\}$, Three-valued CSPs, CSP on \mathbb{Z} , etc.
 - ▶ Structure: e.g., the incidence graph (bipartite graph variables / constraints) is a tree or has a bounded treewidth
 - Language: the library of relations is restricted to a given set Γ

Language fragment

 $\mathsf{CSP}(\Gamma)$ is the problem of deciding the satisfiability of a CSP whose constraints all have relations in Γ .

• For instance Three-valued CSP($\{\neq\}$) is NP-hard since 3-COLORATION is NP-hard

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

The Tractability of SAT Fragments

20 / 22

Definability

pp-definability

A relation R over x_1, \ldots, x_k on domain \mathcal{D} is (pp-)definable from a set of relation Γ if and only if there exists a CSP $\mathcal{N} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ such that:

- $\bullet \ \{x_1,\ldots,x_k\}\subseteq \mathcal{X}$
- $c \in \mathcal{C} \implies R(c) \in \Gamma \cup \{=\}$
- ullet $R(x_1,\ldots,x_k) \iff (x_1,\ldots,x_k)$ can be extended to a solution of $\mathcal N$
- i.e., the relation R can be encoded using relations in Γ
 - \triangleright < is definable from $\{\leq, \neq\}$
 - ▶ A k-clause $(p_1 \lor ... \lor p_k)$ is definable from 3-clauses
 - ► All k-ary relations are definable from k-clauses

Closure

 $\ll \Gamma \gg$ is the set of relations that are definable from Γ

- CSP(Γ) and CSP($\ll \Gamma \gg$) have the same complexity
- Boolean CSPs whose incidence graph is such that constraints vertices have degree 2 (constraints are on at most 2 variables) is in P
 - ▶ Any binary relation is definable by binary clauses
 - ▶ If Γ is the languages composed of 2-clauses, $\{(x \lor y), (\bar{x} \lor y), (\bar{x} \lor \bar{y})\}$, then:
 - ★ CSP(Γ) is 2-SAT
 - ★ $CSP(\ll \Gamma \gg)$ is "Boolean binary CSP"

AS-CNRS aboratoire d'analyse et d'architecture des systèmes du CNRS

Schaefer's Dichotomy Theorem

Schaefer's Theorem

Boolean CSP($\ll \Gamma \gg$) is in **P** if:

- Γ are 2-clauses
- Γ are Horn-clauses
- Γ are dual Horn-clauses
- $\Gamma = \{\oplus\}$ (i.e., XOR. Also known as "AFFINE-SAT")
- Every relation in Γ accepts the tuple with only 0
- ullet Every relation in Γ accepts the tuple with only 1

and is NP-hard otherwise

• Dichotomy: we know the complexity of all the language-based fragments of SAT, and none of them is an intermediate problem