Algorithms for Computational Logic
 SAT Algorithms

Emmanuel Hebrard (adapted from) João Marques Silva
(1) Algorithms
(2) Tree Search
(3) Clause Learning
(4) Search Techniques
(5) Conclusions

(1) Algorithms

(2) Tree Search

- The DPLL Solver
(3) Clause Learning
- The CDCL Solvers
- Clause Learning, UIPs \& Minimization

(4) Search Techniques

- Restarts
- Search Heuristics
- Clauses Deletion

(5) Conclusions

How to Solve SAT?

- Tableau: Deductive/syntactic system
- DP: Resolution
- Davis \& Putnam procedure in 1960
- DPLL: Semantic system, tree search for a model, with unit propagation
- Davis, Logemann \& Loveland procedure in 1962
- CDCL: Conflict-Driven Clause Learning
- Marques Silva \& Sakallah in 1999
- Moskewicz, Madigan, Zhao, Zhang \& Malik in 2001
- Local search and heuristics
- Resolution is a powerfull proof system, but DP is exponential in memory
- DPLL is memory efficient, but tree search is a weak proof system
- The length of the shortest refutation is at least as long as in resolution
- There are cases where it is exponentially larger
- CDCL is memory efficient, very efficient in practice, and as powerfull as resolution as a proof system
\square Outline

(1) Algorithms

(2) Tree Search

- The DPLL Solver
(3) Clause Learning
- The CDCL Solvers
- Clause Learning, UIPs \& Minimization
(4) Search Techniques
- Restarts
- Search Heuristics
- Clauses Deletion
(5) Conclusions

- Data structures

- trail:
- \bar{y}
stores the information required to backtrack
$\star \quad$ trail is the current level in the search tree ${ }^{3}$
\star trail (i) is the number of true literals at level i

丸 Stack: push(),back(),pop-back() in $O(1)$

- Functions
- unassign-back()

Level Dec. Unit Prop.
3 -

$0 \quad \emptyset$

$2 \quad a \longrightarrow b \longrightarrow \perp$ pop I from unit-literals and reset mordel $[\operatorname{var}(I)]$

Level Dec. Unit Prop.

Mas CNRS	Tree Search	8/55
	$\longrightarrow y$	
	$\longrightarrow \bar{b} \longrightarrow \perp$	

unit-literals
trail

- Backtrack to decision level 3
- Backtrack to decision level 2

DPLL: Pseudocode

Algorithm: DPLL

while satisfiability = UNKNOWN do
if unit-propagate() then
if |unit-literals| $=n$ then satisfiability \leftarrow SAT $/ /$ a model is found
else
trail.push(|unit-literals|) // save current level
assign(select-lit()) // add a new true literal
else
if \mid trail $\mid=0$ then satisfiability \leftarrow UNSAT $/ /$ search tree exhausted
else
$d \leftarrow$ unit-literals[trail.back()] // retrieve previous decision
while |unit-literals| > trail.back() do unassign-back() // backtrack
to-propagate \leftarrow trail.back()
trail.pop-back()
$\operatorname{assign}(\bar{d}) / /$ branch out of previous decision CNRS
Outline
(1) Algorithms

2 Tree Search

- The DPLL Solver
(3) Clause Learning
- The CDCL Solvers
- Clause Learning, UIPs \& Minimization

(5) Conclusions

What is a CDCL SAT Solver?

- Extend DPLL SAT solver with:
[DP60,DLL62]
- Clause learning \& non-chronological backtracking
[MSS96,BS97,Z97]
* Exploit UIPs
[MSS96,SSS12]
* Minimize learned clauses
[SB09,VG09]
\star Opportunistically delete clauses
[MSS96,MSS99,GN02]
- Search restarts
- Lazy data structures
\star Watched literals
[MMZZM01]
- Conflict-guided branching
* Activity-based branching heuristics
[MMZZM01]
* Phase saving

LAAS CNRS

Level Dec. Unit Prop.
0

Level Dec. Unit Prop.

- Any cut that separate the decisions from the fail in the decision graph
- Cuts correspond to clauses
- $\varphi \vDash(a \wedge b \wedge c \wedge d \wedge e) \Longrightarrow \perp: \varphi \vDash(\bar{a} \vee \bar{b} \vee \bar{c} \vee \bar{d} \vee \bar{e})$
- $\varphi \vDash(a \wedge b \wedge e) \Longrightarrow \perp: \varphi \vDash(\bar{a} \vee \bar{b} \vee \bar{e})$
- $\varphi \vDash(g \wedge j \wedge k) \Longrightarrow \perp: \varphi \vDash(\bar{g} \vee \bar{j} \vee \bar{k})$
- $\varphi \vDash(g \wedge I) \Longrightarrow \perp: \varphi \vDash(\bar{g} \vee \bar{I} \vee \bar{k})$
- DPLL (bactracks) equivalent to learning that one decision must be changed
- CDCL learn non-trivial cuts

1

2

3

4

5

$$
\emptyset
$$

Clause Learning

- Learnt clause prevent the algorithm from repeating the same mistake later on
- Consider what DPLL would do next:
- Explore branch $a \wedge b \wedge c \wedge \bar{e}$
- Explore branch $a \wedge b \wedge \bar{c} \wedge e$
- Explore branch $a \wedge \bar{b} \wedge c \wedge e$
- Explore branch $a \wedge \bar{b} \wedge \bar{c} \wedge e$
- Adding the clause ($\bar{a} \vee \bar{b} \vee \bar{e})$ makes sure that the solver does not explore the last three branches

Level Dec. Unit Prop.
0 Ø
1

2

3

4

5

Level Dec. Unit Prop.
0
1

2

3

- Analyze conflict
- Reasons: x and z
\star Decision variable \& literals assigned at lower decision levels
- Create new clause: $(\bar{x} \vee \bar{z})$
- Can relate clause learning with resolution
- Learned clauses result from (selected) resolution operations

Computing a Cut

- Computing a minimum cut is polynomial (e.g., with Edmonds-Karp algorithm)
- But costly and more importantly, might often return the failed clause (not asserting!)
- Computing a cut by exploring the implication graph up from the fail
- At any time the list of open nodes is a valid cut
- removing a literal from the current cut and replacing it by its parents is a resolution step

Unique Implication Point (UIP)

A Unique Implication Point is a node of the current decision level such that any path from the decision variable to the conflict node must pass through it

- The decision variable is a UIP
- There might be other UIPs \square

Unique Implication Points (UIPs)
Level Dec. Unit Prop.

- Learn clause $(\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z})$
- But a is an UIP

Level Dec. Unit Prop.
Level Dec. Unit Prop.
$0 \quad \emptyset$
$1 x \longrightarrow \bar{z}$

2
0
1

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1 (it unit propagates at previous level)
- We want to learn UIP-clauses (clauses containing a UIP) because they are asserting
- A learned clause is asserting if and only if it contains exactly one literal of the current level because literals from older levels are all falsified
- A learned clause must contain at least one literal of the current level (since unit propagation did not detect an inconsistency at the previous level)
- Backjump to the highest level of any literal but the UIP
Implementation
- Functions
- unit-propagate()
return the failed clause if there is an inconsistency (null otherwise)
- backjump(Clause:c)

```
Algorithm: CDCL
while satisfiability = UNKNOWN do
    c=unit-propagate()
    if c}=Null the
        if |unit-literals| =n then
            satisfiability \leftarrow SAT
        else
            trail.push(|unit-literals|)
            assign(select-lit())
    else
        if |trail|}=0\mathrm{ then
            satisfiability \leftarrow UNSAT
        else
            backjump(c)
```


Algorithm: Backjump

Input: Conflict clause c
learnt \leftarrow analyze-conflict (c)
$I \leftarrow \arg \max _{l}(\{\operatorname{level}(I) \mid I \in \operatorname{learnt}\})$
$|v| \leftarrow \max (\{$ level $[p] \mid p \neq I \in$ learnt $\})$
while |unit-literals| $>$ trail[$/ v /]$ do unassign-back()
while |trail| > Ivl do trail.pop-back()
add(learnt) // / should be watched by learnt! assign(I)

- We first need to encode the conflict graph
- The parents of a literal / node are the $k-1$ falsified literals of the clause that unit-propagated /
- For every variable x, store reason $[x]$ the clause responsible for x 's unit propagation
- Encoding of the conflict graph
- Which cut(s) should we keep?
- First UIP clauses

Level Dec. Unit Prop.
$0 \quad \emptyset$
1

2

3

4

- Multiple UIPs used in GRASP
- First UIP learning used in Chaff
- First UIP:
- Learn clause $(\bar{w} \vee \bar{y} \vee \bar{a})$
- But there can be more than 1 UIP
- Second UIP:
- Learn clause $(\bar{x} \vee \bar{z} \vee a)$
- In practice smaller clauses more effective
- Compare with ($\bar{w} \vee \bar{x} \vee \bar{y} \vee \bar{z}$)
- Mainly empirical evidences
- Can be seen as a way to detect "hubs"
- How to effectively vaccinate a population against a contagious desease if you have only a limited number of doses?
- Pick a person randomly, ask her to name a friend, give a vaccine shot to the friend
- Repeat until there is no dose
- People nominated as friends are more likely to know many people, and hence be super-spreaders
- The decision at failure level is always a UIP (random)
- Other UIPs are "friends" (linked via unit propagation)
- Not all traversal orders reach the first UIP clause
- E.g., resolve c then resolve a
- Solution: resolve literals in reverse chronological order (of unit propagation)
- The first UIP literal is not resolved until all its descendants are
- By definition, once all its descendants are resolved, it is the only literal of the current level and the exploration can stop

Level Dec. Unit Prop.
$0 \emptyset$
1

2

3

4

Implementation

- Data structures
- level [Variable: x] \mapsto int
- reason [Variable : x] \mapsto Clause
^ Change assign(Literal:/) and unassign-back(Literal:/)
the decision level at which x was unit propagated the clause responsible for x 's unit propagation
- Functions
- analyze-conflict(Clause:c) \mapsto Clause
- backjump(Clause:c) \mapsto Boolean
analyze conflict on clause c and returns a firt UIP clause returns false if the search tree is exhausted and true otherwise

Algorithm: First UIP

Input: c
seen $\leftarrow \emptyset$ learnt $\leftarrow()$
reason $\leftarrow c$
$n_{\text {cur }} \leftarrow 0$
$I \leftarrow$ None
$i \leftarrow \mid$ unit-literals $\mid-1$
repeat
foreach $p \neq I \in$ reason \backslash seen do
add p to seen
if level $[p]=\mid$ trail \mid then
$n_{\text {cur }} \leftarrow n_{\text {cur }}+1$
else
add p to learnt
while unit-literals[i] is not in seen do $i \leftarrow i-1$
$I \leftarrow$ unit-literals[$i]$
reason \leftarrow reason[/]
$n_{\text {cur }} \leftarrow n_{\text {cur }}-1$
until $n_{\text {cur }}>0$
add the last explore literal / to learnt

Level Dec. Unit Prop.
$0 \quad \emptyset$
1

2

3

- Learn clause $(\bar{x} \vee \bar{y} \vee \bar{z} \vee \bar{b})$
- Apply self-subsuming resolution (i.e. local minimization)
- Learn clause $(\bar{x} \vee \bar{y} \vee \bar{z} \vee \bar{b})$
- Apply self-subsuming resolution (i.e. local minimization)

Level Dec. Unit Prop.
$0 \quad \emptyset$

1

2

- Learn clause $(\bar{w} \vee \bar{x} \vee \bar{c})$ Learn clause $(\bar{w} \vee \bar{x} \vee \bar{c})$
- Cannot apply self-subsuming resolution
- Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
- Can apply recursive minimization
- Learn clause $(\bar{w} \vee \bar{x})$
- Marked nodes: literals in learned clause
- Trace back from c until marked nodes or new decision nodes
- Learn clause if only marked nodes visited
Outline
(1) Algorithms

2. Tree Search

- The DPLL Solver
(3) Clause Learning
- The CDCL Solvers
- Clause Learning, UIPs \& Minimization

4 Search Techniques

- Restarts
- Search Heuristics
- Clauses Deletion
(5) Conclusions
- Let sat-sol be a randomized SAT solver, and x be a SAT instance
- The duration of a run of sat-sol (x) depends on the random seed
- SAT solvers are Las-Vegas algorithms: guaranteed correctness, unknown runtime
- Their runtime distribution can be leveraged to improve their efficiency !
- This is true of all exact solvers (MIP, CSP, etc.)

Heavy tails
- Runtime distributions are rarely Gaussian
- Often Heavy tailed
- The average may be greatly skewed to the right

- Pigeon hole formula $P H P^{n \rightarrow n-1}$:

$$
\begin{array}{rr}
\left(x_{1,1} \vee x_{1,2} \vee \ldots \vee x_{1, n-1}\right) \wedge & \text { Pigeon } 1 \text { needs a hole } \\
\ldots & \text { Pigeon } n \text { needs a hole } \\
\left(x_{n, 1} \vee x_{n, 2} \vee \ldots \vee x_{n, n-1}\right) \wedge & \text { Hole } 1 \text { can contain at most } 1 \text { pigeon } \\
\bigwedge_{1 \leq i<j \leq n}\left(x_{\bar{i}, 1} \vee x_{\bar{j}, 1}\right) \wedge & \text { Hole } 2 \text { can contain at most } 1 \text { pigeon } \\
\bigwedge_{1 \leq i<j \leq n}\left(x_{\bar{i}, 2} \vee x_{\bar{j}, 2}\right) \wedge & \\
\ldots & \\
\bigwedge\left(x_{i, n} \overline{n-1} \vee x_{j, n-1}\right) & \text { Hole } n-1 \text { can contain at most } 1 \text { pigeon }
\end{array}
$$

- DPLL on the Pigeon hole formula takes exponential time

$$
\left(x_{1,1} \vee x_{1,2} \vee \ldots \vee x_{1, n-1} \vee x_{1}\right) \wedge \quad \text { Pigeon } 1 \text { needs a hole }
$$

- Variable x_{1}, if true, allows Pigeon 1 to have its own hole, making the problem easy
- If Variable x_{1} is set to false, the problem is not satisfiable, and it takes a time exponential in n to prove it
- If we suppose that the solver branch on x_{1} first and uniformly randomly pick the value true or false:
- It will solve the problem in under a second with probability $\frac{1}{2}$
- It will solve the problem in $\Theta\left(2^{n}\right)$ time with probability $\frac{1}{2}$
- In expectation: $\Theta\left(2^{n-1}\right)$ time!
- What if we restart the solver if no solution is found after 1 s ?
- Chances of taking more than 10 second is $\frac{1}{2^{10}}$
- Search restarts can reduce the runtime expectation when the runtime distribution is heavy tailed
- When a time limit τ is reached, we stop and resume search from the start
- Let t be a random variable equal to the runtime of the solver

$$
\begin{array}{rr}
T= & p(t \leq \tau) \cdot \mathbb{E}_{p}[t \mid t \leq \tau]+(1-p(t \leq \tau)) \cdot(\tau+T) \\
T= & \mathbb{E}_{p}[t \mid t \leq \tau]+\frac{(1-p(t \leq \tau)) \tau}{p(t \leq \tau)}
\end{array}
$$

- Simple Markov Decision Process with two states ("solved" and "not solved")
- There is a stationary (constant) policy τ^{*} that minimizes the runtime $T\left(\tau^{*}\right)$
- When the expectation of the runtime is unknown, the Luby's universal strategy guarantees a runtime of $T\left(\tau^{*}\right) \log T\left(\tau^{*}\right)$

$$
\begin{aligned}
& \tau_{i}=\left\{\begin{array}{l}
2^{k-1}, \text { if } i=2^{k-1}-1 \\
\tau_{i-2^{k-1}+1}, \text { if } 2^{k-1} \leq i<2^{k}-1
\end{array}\right. \\
& \begin{array}{r|cccccccccccccccc}
i: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
k: & 1 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 5 \\
2^{k-1}: & 1 & 2 & 2 & 4 & 4 & 4 & 4 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 16 \\
\tau_{i}: & 1 & 2 & 2 & 4 & 2 & 2 & 4 & 8 & 2 & 2 & 4 & 2 & 2 & 4 & 8 & 16
\end{array}
\end{aligned}
$$

- In practice, the geometric sequence $\tau_{i}=f^{i}$ works well

- Unit propagation reduce the size of search tree by cutting branches
- The branching choice also has an impact on the size of the tree
- It can have a huge impact, but it is hard to know which choice is best
- Some principles:
- If we are in an unsatisfiable subproblem, try to detect it as soon as possible
* By branching first on part of the problem that is most constrained
- If we are in a satisfiable subproblem, try to stay on a branch leading to a solution

[^0]

- Same principles in SAT and all other tree-search methods:
- Variable ordering: on which variable should we branch first?
* The one on which we will fail on both subtrees, to get out of the unsatisfiable branch
\star Otherwise, on the one that will minimize the size of the subtrees
- Value ordering: on which variable should we branch first?
* The one most likely to lead to a solution
\star If the current subtree is not satisfiable, it does not matter (much), both branches must be explored
- Most of the time is spent getting out of unsatisfiable subtrees: the variable ordering is more important than the value ordering
\star When solving an optimization problem top-down, finding good quality solutions quickly is important
* Interaction with clause-learning
- Variable State Independent Decaying Sum (VSIDS)
- Assigns a weight to variables involved in conflicts: activity score
- Variants exist:
- Increment weight of the literals in the learned clause
- Increment weight of the literals in the learned clause and all variables resolved during conflict analysis
- The activity score $A(i)$ of a variable x_{i} is the decayed sum of the weight increments:
- Let $b_{j}(i)$ be equal to 1 if variable x_{i} 's activity was incremented in the j-th fail, and let $0<\gamma \leq 1$ be a constant, and k the number of fails

$$
A(i)=\sum_{j=1}^{k} \gamma^{k-j} b_{j}(i)
$$ Value Ordering

| x_{1} | x_{2} | x_{3} | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| x_{4} | x_{5} | x_{6} | x_{7} | x_{8} | x_{9} | x_{10} | x_{11} | x_{12} |

subproblem size up to 2^{8}

- When backjumping with an asserting clause, we undo potentially useful search
- Suppose that the variables between the conflict and assertion levels encode a (relatively) independent problem: its solution is lost
- Phase saving: branch using the previous value
- If the previous solution still stands, it will be found efficiently
- Synergy with clause learning
- Intuitively, we want to learn clauses that constrain variables in an unsatisfiable core: recently learned clauses are still asserting if we use phase saving
- A SAT solver typically fail (tenth of) thousands times per second
- Learn a new clause on every fail
- Learned clauses tend to be long
- Unit propagation via watched literal is efficient, but still accounts for most of the run time
- Moreover, not all clauses are equally useful, some never unit propagate
- Can we reliably predict which clauses are more promising and forget the rest?
- Some intuitive criteria:
- Length: long clauses unit propagate (probably) less often
- Activity: clauses with less active literals have (historically) unit propagated more often
- Deleting long and inactive learned clauses is useful
- Clause deletion is very important, but difficult to parameterized (how often?, how many?)
- Length and activity are not perfect predictors
- Some clauses are long but useful
- In general, a clause of length L can be satisfied in $2^{L}-1$ ways
- The clause $x_{1} \vee \ldots \vee x_{100}$ from the direct encoding of the CSP variable $x \in\{1, \ldots, 100\}$ can be satisfied in only 100 ways (the variable takes exactly one of the 100 values)
- The unit literal x_{i} unit propagates \bar{x}_{j} for all $j \neq i$ via pairwise or sequential clauses
- Clauses involving inter-dependent literals are more likely to unit propagate: the implicit relation on dependent variables is tighter

CNRS

- We want something efficient
- Idea: variables that unit propagated at the same level tend to be more linked together

Literal Block Distance Ibd(0)

Let level[/] be the decision level at which literal / was inferred.

$$
\operatorname{lbd}(c)=\mid\{\text { level }[/] \mid I \in c\} \mid
$$

- Solver "Glucose" was the first to use this idea of "Glue clauses" and was very successful
(3) Clause Learning
- The CDCL Solvers
- Clause Learning, UIPs \& Minimization

4) Search Techniques

- Restarts
- Search Heuristics
- Clauses Deletion
(5) Conclusions

- Extend DPLL SAT solver with:

[DP60,DLL62]

- Clause learning \& non-chronological backtracking
[MSS96,BS97,Z97]
\star Learn First-UIP clauses
[MSS96,SSS12]
^ Minimize learned clauses
[SB09,VG09]
\star Opportunistically delete clauses (LBD)
[MSS96,MSS99,GN02]
- Search restarts
- Lazy data structures
\star Watched literals
[MMZZM01]
- Conflict-guided branching
* Activity-based branching heuristics
\star Phase saving

[^0]: \star Choice of the most promising branch

