
Algorithms for Computational Logic
SAT Algorithms

Emmanuel Hebrard (adapted from) João Marques Silva

1 / 55

Outline

1 Algorithms

2 Tree Search

3 Clause Learning

4 Search Techniques

5 Conclusions

2 / 55

Outline

1 Algorithms

2 Tree Search
The DPLL Solver

3 Clause Learning
The CDCL Solvers
Clause Learning, UIPs & Minimization

4 Search Techniques
Restarts
Search Heuristics
Clauses Deletion

5 Conclusions

Algorithms 3 / 55

How to Solve SAT?

Tableau: Deductive/syntactic system

DP: Resolution

▶ Davis & Putnam procedure in 1960 [DP60]

DPLL: Semantic system, tree search for a model, with unit propagation

▶ Davis, Logemann & Loveland procedure in 1962 [DLL62]

CDCL: Conflict-Driven Clause Learning

▶ Marques Silva & Sakallah in 1999

▶ Moskewicz, Madigan, Zhao, Zhang & Malik in 2001

Local search and heuristics

Algorithms 4 / 55

How to Solve SAT?

Resolution is a powerfull proof system, but DP is exponential in memory

DPLL is memory efficient, but tree search is a weak proof system

▶ The length of the shortest refutation is at least as long as in resolution

▶ There are cases where it is exponentially larger

CDCL is memory efficient, very efficient in practice, and as powerfull as resolution as a proof system

Algorithms 5 / 55

Outline

1 Algorithms

2 Tree Search
The DPLL Solver

3 Clause Learning
The CDCL Solvers
Clause Learning, UIPs & Minimization

4 Search Techniques
Restarts
Search Heuristics
Clauses Deletion

5 Conclusions

Tree Search 6 / 55

The DPLL Algorithm

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

F = (x ∨ y) ∧ (a ∨ b) ∧ (ā ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ b̄)

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

a b ⊥

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

ā b̄ ⊥

Level Dec. Unit Prop.

0

1

2

3

∅

x

ȳ

a b ⊥

Level Dec. Unit Prop.

0

1

2

3

∅

x

ȳ

ā b̄ ⊥

Level Dec. Unit Prop.

0

1

2

∅

x̄

a

y

b ⊥

Level Dec. Unit Prop.

0

1

2

∅

x̄

ā

y

b̄ ⊥

a
ā

y

a
ā

ȳx

a
ā

x̄

a
ā

y

a
ā

ȳx

a
ā

x̄

a
ā

y

a
ā

ȳx

a
ā

x̄

a
ā

y

a
ā

ȳx

a
ā

x̄

a
ā

y

a
ā

ȳx

a
ā

x̄

a
ā

y

a
ā

ȳx

a
ā

x̄

Tree Search 7 / 55

Implementation

Data structures

▶ trail: stores the information required to backtrack

⋆ |trail| is the current level in the search tree

⋆ trail(i) is the number of true literals at level i

⋆ Stack: push(),back(),pop-back() in O(1)

Functions

▶ unassign-back() pop l from unit-literals and reset model [var(l)]

Tree Search 8 / 55

Backtracking

unit-literals

trail

a

0

b̄

2

c

3

d e f ḡ h̄

9

i j k̄ j̄

Backtrack to decision level 3

Backtrack to decision level 2

Tree Search 9 / 55

DPLL: Pseudocode

Algorithm: DPLL

while satisfiability = UNKNOWN do
if unit-propagate() then

if |unit-literals| = n then satisfiability← SAT // a model is found
else

trail.push(|unit-literals|) // save current level
assign(select-lit()) // add a new true literal

else
if |trail| = 0 then satisfiability← UNSAT // search tree exhausted
else

d ← unit-literals[trail.back()] // retrieve previous decision
while |unit-literals| > trail.back() do unassign-back() // backtrack
to-propagate← trail.back()
trail.pop-back()

assign(d̄) // branch out of previous decision

Tree Search 10 / 55

Outline

1 Algorithms

2 Tree Search
The DPLL Solver

3 Clause Learning
The CDCL Solvers
Clause Learning, UIPs & Minimization

4 Search Techniques
Restarts
Search Heuristics
Clauses Deletion

5 Conclusions

Clause Learning 11 / 55

What is a CDCL SAT Solver?

Extend DPLL SAT solver with: [DP60,DLL62]

▶ Clause learning & non-chronological backtracking [MSS96,BS97,Z97]

⋆ Exploit UIPs [MSS96,SSS12]

⋆ Minimize learned clauses [SB09,VG09]

⋆ Opportunistically delete clauses [MSS96,MSS99,GN02]

▶ Search restarts [GSK98,BMS00,H07,B08]

▶ Lazy data structures

⋆ Watched literals [MMZZM01]

▶ Conflict-guided branching
⋆ Activity-based branching heuristics [MMZZM01]

⋆ Phase saving [PD07]

▶ ...

Clause Learning 12 / 55

How Significant are CDCL SAT Solvers?

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180 200

C
PU

 T
im

e
(in

 se
co

nd
s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forklift (2003)
Siege (2003)
Zchaff (2004)
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)
Rsat (2007)
Minisat 2.1 (2008)
Precosat (2009)
Glucose (2009)
Clasp (2009)
Cryptominisat (2010)
Lingeling (2010)
Minisat 2.2 (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)
Lingeling 587f (2011)

GRASP

DPLL

? ?
Clause Learning 13 / 55

Implication Graph

Level Dec. Unit Prop.

0

1

2

3

4

5

∅

a

b

c

d

e

f̄ g

h̄ i

j

k

l ⊥

φ =(b̄ ∨ f̄) ∧
(ā ∨ f ∨ g) ∧
(d̄ ∨ c̄ ∨ b̄ ∨ h̄) ∧
(h ∨ ḡ ∨ i) ∧
(ē ∨ j) ∧
(ē ∨ k) ∧
(j̄ ∨ k̄ ∨ ḡ ∨ l) ∧
(l̄ ∨ ḡ)

(a ∧ b ∧ c ∧ d ∧ e) =⇒ ⊥

a

b

c

d

e (a ∧ b ∧ e) =⇒ ⊥
(g ∧ j ∧ k) =⇒ ⊥

g

j

k
(l ∧ g) =⇒ ⊥

l

Clause Learning 14 / 55

Cut of the Implication Graph

Any cut that separate the decisions from the fail in
the decision graph

Cuts correspond to clauses

▶ φ ⊨ (a∧ b ∧ c ∧ d ∧ e) =⇒ ⊥: φ ⊨ (ā∨ b̄ ∨ c̄ ∨ d̄ ∨ ē)

▶ φ ⊨ (a ∧ b ∧ e) =⇒ ⊥: φ ⊨ (ā ∨ b̄ ∨ ē)

▶ φ ⊨ (g ∧ j ∧ k) =⇒ ⊥: φ ⊨ (ḡ ∨ j̄ ∨ k̄)

▶ φ ⊨ (g ∧ l) =⇒ ⊥: φ ⊨ (ḡ ∨ l̄ ∨ k̄)

DPLL (bactracks) equivalent to learning that one
decision must be changed

CDCL learn non-trivial cuts

Level Dec. Unit Prop.

0

1

2

3

4

5

∅

a

b

c

d

e

f̄ g

h̄ i

j

k
l ⊥

Clause Learning 15 / 55

Clause Learning

Learnt clause prevent the algorithm from repeating
the same mistake later on

Consider what DPLL would do next:

▶ Explore branch a ∧ b ∧ c ∧ ē

▶ Explore branch a ∧ b ∧ c̄ ∧ e

▶ Explore branch a ∧ b̄ ∧ c ∧ e

▶ Explore branch a ∧ b̄ ∧ c̄ ∧ e

Adding the clause (ā ∨ b̄ ∨ ē) makes sure that the
solver does not explore the last three branches

Level Dec. Unit Prop.

0

1

2

3

4

5

∅

a

b

c

d

e

f̄ g

h̄ i

j

k
l ⊥

a

b

e

Clause Learning 16 / 55

Clause Learning and Resolution

Level Dec. Unit Prop.

0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)(ā ∨ z̄)

(x̄ ∨ z̄)(x̄ ∨ z̄)

Analyze conflict
▶ Reasons: x and z

⋆ Decision variable & literals assigned at lower decision levels

▶ Create new clause: (x̄ ∨ z̄)

Can relate clause learning with resolution

▶ Learned clauses result from (selected) resolution operations

Clause Learning 17 / 55

Computing a Cut

Computing a minimum cut is polynomial (e.g., with Edmonds–Karp algorithm)

▶ But costly and more importantly, might often return the failed clause (not asserting!)

Computing a cut by exploring the implication graph up from the fail

▶ At any time the list of open nodes is a valid cut

▶ removing a literal from the current cut and replacing it by its parents is a resolution step

Clause Learning 18 / 55

Unique Implication Points (UIPs)

Unique Implication Point (UIP)

A Unique Implication Point is a node of the current decision level such that any path from the
decision variable to the conflict node must pass through it

The decision variable is a UIP

There might be other UIPs

Clause Learning 19 / 55

Unique Implication Points (UIPs)

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xxx

yyy

zzz aaa

b ⊥

c

(b̄ ∨ c̄) (w̄ ∨ ā ∨ c) (x̄ ∨ ā ∨ b) (ȳ ∨ z̄ ∨ a)

(w̄ ∨ ā ∨ b̄)

(w̄ ∨ x̄ ∨ ȳ ∨ z̄)

(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)

Learn clause (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

But a is an UIP

Learn clause (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

But a is an UIP: learn clause (w̄ ∨ x̄ ∨ ā)

Clause Learning 20 / 55

Clause Learning and Backjumping

Level Dec. Unit Prop.

0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

Level Dec. Unit Prop.

0

1

∅

x z̄

Clause (x̄ ∨ z̄) is asserting at decision level 1 (it unit propagates at previous level)

We want to learn UIP-clauses (clauses containing a UIP) because they are asserting
▶ A learned clause is asserting if and only if it contains exactly one literal of the current level because literals from

older levels are all falsified
▶ A learned clause must contain at least one literal of the current level (since unit propagation did not detect an

inconsistency at the previous level)

Backjump to the highest level of any literal but the UIP

Clause Learning 21 / 55

Implementation

Functions

▶ unit-propagate() return the failed clause if there is an inconsistency (null otherwise)

▶ backjump(Clause:c) conflict analysis and backjump

Clause Learning 22 / 55

CDCL: Pseudocode

Algorithm: CDCL

while satisfiability = UNKNOWN do
c = unit-propagate()
if c = Null then

if |unit-literals| = n then
satisfiability← SAT

else
trail.push(|unit-literals|)
assign(select-lit())

else
if |trail| = 0 then

satisfiability← UNSAT
else

backjump(c)

Algorithm: Backjump

Input: Conflict clause c
learnt ← analyze-conflict(c)
l ← argmaxl({level(l) | l ∈ learnt})
lvl ← max({level[p] | p ̸= l ∈ learnt})
while |unit-literals| > trail[lvl] do unassign-back()
while |trail| > lvl do trail.pop-back()
add(learnt) // l should be watched by learnt!
assign(l)

Clause Learning 23 / 55

Implementing analyze-conflict

We first need to encode the conflict graph

The parents of a literal l node are the k − 1 falsified literals of the clause that unit-propagated l

For every variable x, store reason[x] the clause responsible for x’s unit propagation

▶ Encoding of the conflict graph

Which cut(s) should we keep?

▶ First UIP clauses

Clause Learning 24 / 55

Multiple UIPs

Level Dec. Unit Prop.

0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

First UIP:

▶ Learn clause (w̄ ∨ ȳ ∨ ā)

But there can be more than 1 UIP

Second UIP:

▶ Learn clause (x̄ ∨ z̄ ∨ a)

In practice smaller clauses more effective

▶ Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

Multiple UIPs used in GRASP [MSS96]

First UIP learning used in Chaff [MMZZM01] and in most modern solvers

Clause Learning 25 / 55

Why are First UIP Good?

Mainly empirical evidences

Can be seen as a way to detect “hubs”

How to effectively vaccinate a population against a contagious desease if you have only a limited number of
doses?

▶ Pick a person randomly, ask her to name a friend, give a vaccine shot to the friend

▶ Repeat until there is no dose

People nominated as friends are more likely to know many people, and hence be super-spreaders

The decision at failure level is always a UIP (random)

Other UIPs are “friends” (linked via unit propagation)

Clause Learning 26 / 55

Computing First UIPs

Not all traversal orders reach the first UIP clause

▶ E.g., resolve c then resolve a

Solution: resolve literals in reverse chronological
order (of unit propagation)

The first UIP literal is not resolved until all its
descendants are

▶ By definition, once all its descendants are resolved, it
is the only literal of the current level and the
exploration can stop

Level Dec. Unit Prop.

0

1

2

3

4

∅
w

x

y

z r

s

a

b ⊥

c

b

ca

w

x

r

Clause Learning 27 / 55

Implementation

Data structures

▶ level [Variable : x] 7→ int the decision level at which x was unit propagated
▶ reason [Variable : x] 7→ Clause the clause responsible for x’s unit propagation

⋆ Change assign(Literal:l) and unassign-back(Literal:l)

Functions

▶ analyze-conflict(Clause:c) 7→ Clause analyze conflict on clause c and returns a firt UIP clause

▶ backjump(Clause:c) 7→ Boolean returns false if the search tree is exhausted and true otherwise

Clause Learning 28 / 55

Implementation

Algorithm: First UIP

Input: c
seen← ∅ learnt ← ()
reason← c
ncur ← 0
l ← None
i ← |unit-literals| − 1

repeat
foreach p ̸= l ∈ reason \ seen do

add p to seen
if level[p] = |trail| then

ncur ← ncur + 1
else

add p to learnt

while unit-literals[i] is not in seen do i ← i − 1
l ← unit-literals[i]
reason← reason[l]
ncur ← ncur − 1

until ncur > 0
add the last explore literal l to learnt

Clause Learning 29 / 55

Clause Minimization I

Level Dec. Unit Prop.

0

1

2

3

∅

xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

(x̄ ∨ ȳ ∨ z̄)

Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)

Apply self-subsuming resolution (i.e. local minimization) [SB09]

Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)

Apply self-subsuming resolution (i.e. local minimization)

Learn clause (x̄ ∨ ȳ ∨ z̄) Clause Learning 30 / 55

Clause Minimization II

Level Dec. Unit Prop.

0

1

2

∅

ww a

b

ccc

xx e

d ⊥

Learn clause (w̄ ∨ x̄ ∨ c̄) Learn clause (w̄ ∨ x̄ ∨ c̄)

Cannot apply self-subsuming resolution

▶ Resolving with reason of c yields (w̄ ∨ x̄ ∨ ā ∨ b̄)

Can apply recursive minimization

Learn clause (w̄ ∨ x̄)

Marked nodes: literals in learned clause [SB09]

Trace back from c until marked nodes or new decision nodes

▶ Learn clause if only marked nodes visited

Clause Learning 31 / 55

Outline

1 Algorithms

2 Tree Search
The DPLL Solver

3 Clause Learning
The CDCL Solvers
Clause Learning, UIPs & Minimization

4 Search Techniques
Restarts
Search Heuristics
Clauses Deletion

5 Conclusions

Search Techniques 32 / 55

Runtime distribution

Let sat-sol be a randomized SAT solver, and x be a SAT instance

The duration of a run of sat-sol(x) depends on the random seed

SAT solvers are Las-Vegas algorithms: guaranteed correctness, unknown
runtime

▶ Their runtime distribution can be leveraged to improve their efficiency !

This is true of all exact solvers (MIP, CSP, etc.)
10s 20s 40s 50s

Runtime

P
ro
b
ab
ili
ty

Search Techniques 33 / 55

Heavy tails

Runtime distributions are rarely Gaussian

Often Heavy tailed

The average may be greatly skewed to the right

20s 40s 50s 60s 70s 80s

Runtime

P
ro
b
ab
ili
ty

Search Techniques 34 / 55

Example: pigeon hole

Pigeon hole formula PHPn→n−1:

(x1,1 ∨ x1,2 ∨ . . . ∨ x1,n−1)∧ Pigeon 1 needs a hole

. . .

(xn,1 ∨ xn,2 ∨ . . . ∨ xn,n−1)∧ Pigeon n needs a hole∧
1≤i<j≤n

(¯xi,1 ∨ ¯xj,1)∧ Hole 1 can contain at most 1 pigeon

∧
1≤i<j≤n

(¯xi,2 ∨ ¯xj,2)∧ Hole 2 can contain at most 1 pigeon

. . .∧
1≤i<j≤n

(¯xi,n−1 ∨ ¯xj,n−1) Hole n − 1 can contain at most 1 pigeon

Search Techniques 35 / 55

Example: pigeon hole

DPLL on the Pigeon hole formula takes exponential time

(x1,1 ∨ x1,2 ∨ . . . ∨ x1,n−1∨x1)∧ Pigeon 1 needs a hole

. . .

Variable x1, if true, allows Pigeon 1 to have its own hole, making the problem easy

If Variable x1 is set to false, the problem is not satisfiable, and it takes a time exponential in n to prove it

If we suppose that the solver branch on x1 first and uniformly randomly pick the value true or false:

▶ It will solve the problem in under a second with probability 1
2

▶ It will solve the problem in Θ(2n) time with probability 1
2

▶ In expectation: Θ(2n−1) time!

Search Techniques 36 / 55

Search Restarts

What if we restart the solver if no solution is found after 1s?

Chances of taking more than 10 second is 1
210

Search restarts can reduce the runtime expectation when the runtime distribution is heavy tailed

Search Techniques 37 / 55

Search Restarts I

When a time limit τ is reached, we stop and resume search from the start

Let t be a random variable equal to the runtime of the solver

T = p(t ≤ τ) · Ep[t | t ≤ τ] + (1− p(t ≤ τ)) · (τ + T)

T = Ep[t | t ≤ τ] +
(1− p(t ≤ τ))τ

p(t ≤ τ)

Simple Markov Decision Process with two states (“solved” and “not solved”)

▶ There is a stationary (constant) policy τ∗ that minimizes the runtime T (τ∗)

Search Techniques 38 / 55

Search Restarts II

When the expectation of the runtime is unknown, the Luby’s universal strategy guarantees a runtime of
T (τ∗) logT (τ∗)

τi =

{
2k−1, if i = 2k−1 − 1

τi−2k−1+1, if 2
k−1 ≤ i < 2k − 1

i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k: 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5

2k−1: 1 2 2 4 4 4 4 8 8 8 8 8 8 8 8 16
τi : 1 2 2 4 2 2 4 8 2 2 4 2 2 4 8 16

In practice, the geometric sequence τi = f i works well

Search Techniques 39 / 55

Search Heuristics

Unit propagation reduce the size of search tree by cutting branches

The branching choice also has an impact on the size of the tree

▶ It can have a huge impact, but it is hard to know which choice is best

Some principles:

▶ If we are in an unsatisfiable subproblem, try to detect it as soon as possible

⋆ By branching first on part of the problem that is most constrained

▶ If we are in a satisfiable subproblem, try to stay on a branch leading to a solution

⋆ Choice of the most promising branch

Search Techniques 40 / 55

Coloring

x0{5, 6} x1

{4, 5}

x2

{1, 2, 3, 4, 5, 6}

x3

{1, 2, 3, 4}
x4 {1, 2, 3}

x5 {1, 2, 3}

x6

{1, 2, 3}

̸=

̸=

̸=
̸=

̸=
̸=

̸=

̸=

̸=

Search Techniques 41 / 55

Lexicographic

x0{5, 6}5 x1

{4, 5}4

x2

{1, 2, 3, 4, 5, 6}{1, 2, 3, 5, 6}1

x3

{1, 2, 3, 4}{1, 2, 3}
x4 {1, 2, 3}

x5 {1, 2, 3}

x6

{1, 2, 3}

̸=

̸=

̸=
̸=

̸=
̸=

̸=

̸=

̸=

∅

x0 = 5

x2 = 1

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x4 = 1

fail

x4 ̸= 1

fail

x2 ̸= 1

x2 = 2

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x4 = 1

fail

x4 ̸= 1

fail

x2 ̸= 2

x2 = 3

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x4 = 1

fail

x4 ̸= 1

fail

x2 ̸= 3

x2 = 5

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x4 = 1

fail

x4 ̸= 1

fail

x2 ̸= 5

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x4 = 1

fail

x4 ̸= 1

fail

x0 ̸= 5

x1 = 4

x2 = 1

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x4 = 1

fail

x4 ̸= 1

fail

x2 ̸= 1

x2 = 2

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x4 = 1

fail

x4 ̸= 1

fail

x2 ̸= 2

x2 = 3

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x4 = 1

fail

x4 ̸= 1

fail

x2 ̸= 3

x2 = 5

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x4 = 1

fail

x4 ̸= 1

fail

x2 ̸= 5

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x4 = 1

fail

x4 ̸= 1

fail

x1 ̸= 4

x2 = 1

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x3 = 3

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 3

x4 = 1

x5 = 2

Search Techniques 42 / 55

Maximum Degree

x0{5, 6} x1

{4, 5}4

x2

{1, 2, 3, 4, 5, 6}

x3

{1, 2, 3, 4}1
x4 {1, 2, 3}

x5 {1, 2, 3}

x6

{1, 2, 3}

̸=

̸=

̸=

̸=

̸=

̸=
̸=

̸=
̸=

∅

x3 = 1

x1 = 4

x4 = 2

fail

x4 ̸= 2

fail

x1 ̸= 4

x5 = 2

fail

x5 ̸= 2

fail

x3 ̸= 1

x3 = 2

x1 = 4

x5 = 1

fail

x5 ̸= 1

fail

x1 ̸= 4

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x3 = 3

x1 = 4

x4 = 1

fail

x4 ̸= 1

fail

x1 ̸= 4

x5 = 1

fail

x5 ̸= 1

fail

x3 ̸= 3

x5 = 1

x4 = 2

x2 = 1

Search Techniques 43 / 55

Minimum Domain

x0{5, 6}5 x1

{4, 5}4

x2

{1, 2, 3, 4, 5, 6}{1, 2, 3, 5, 6}

x3

{1, 2, 3, 4}{1, 2, 3}1
x4 {1, 2, 3}{2, 3}

x5 {1, 2, 3}{2, 3}

x6

{1, 2, 3}{2, 3}

̸=

̸=

̸=
̸=

̸=
̸=

̸=

̸=

̸=

∅

x0 = 5

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x4 = 1

fail

x4 ̸= 1

fail

x0 ̸= 5

x1 = 4

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x4 = 1

fail

x4 ̸= 1

fail

x1 ̸= 4

x4 = 1

x5 = 2

x2 = 1

Search Techniques 44 / 55

Minimum Domain / Degree

x0{5, 6}5 x1

{4, 5}4

x2

{1, 2, 3, 4, 5, 6}{1, 2, 3, 5, 6}

x3

{1, 2, 3, 4}{1, 2, 3}1
x4 {1, 2, 3}{2, 3}

x5 {1, 2, 3}{2, 3}

x6

{1, 2, 3}{2, 3}

̸=

̸=

̸=
̸=

̸=
̸=

̸=

̸=

̸=

domain: 2
degree: 3

domain: 3
degree: 3

∅

x1 = 4

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x4 = 1

fail

x4 ̸= 1

fail

x1 ̸= 4

x4 = 1

x5 = 2

x2 = 1

Search Techniques 45 / 55

Minimum Domain / Degree

x06 x1

5

x2

{1, 2, 3, 4, 6}

x3

{1, 2, 3, 4}
x4 {1, 2, 3}

x5 {1, 2, 3}

x6

{1, 2, 3}

̸=

̸=

̸=
̸=

̸=
̸=

̸=

̸=

̸=

domain size: 4
degree: 3

domain size: 3
degree: 3

∅

x1 = 4

x3 = 1

x4 = 2

fail

x4 ̸= 2

fail

x3 ̸= 1

x3 = 2

x4 = 1

fail

x4 ̸= 1

fail

x3 ̸= 2

x4 = 1

fail

x4 ̸= 1

fail

x1 ̸= 4

x4 = 1

x5 = 2

x2 = 1

Search Techniques 46 / 55

Branching Strategies in SAT

Same principles in SAT and all other tree-search methods:

▶ Variable ordering: on which variable should we branch first?

⋆ The one on which we will fail on both subtrees, to get out of the unsatisfiable branch

⋆ Otherwise, on the one that will minimize the size of the subtrees

▶ Value ordering: on which variable should we branch first?

⋆ The one most likely to lead to a solution

⋆ If the current subtree is not satisfiable, it does not matter (much), both branches must be explored

▶ Most of the time is spent getting out of unsatisfiable subtrees: the variable ordering is more important than the
value ordering

⋆ When solving an optimization problem top-down, finding good quality solutions quickly is important

⋆ Interaction with clause-learning

Search Techniques 47 / 55

Variable Ordering

Variable State Independent Decaying Sum (VSIDS)

Assigns a weight to variables involved in conflicts: activity score

Variants exist:

▶ Increment weight of the literals in the learned clause

▶ Increment weight of the literals in the learned clause and all variables resolved during conflict analysis

The activity score A(i) of a variable xi is the decayed sum of the weight increments:

▶ Let bj (i) be equal to 1 if variable xi ’s activity was incremented in the j-th fail, and let 0 < γ ≤ 1 be a constant, and
k the number of fails

A(i) =
k∑

j=1

γk−jbj(i)

Search Techniques 48 / 55

Value Ordering

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

subproblem size up to 28

When backjumping with an asserting clause, we undo potentially useful search

Suppose that the variables between the conflict and assertion levels encode a (relatively) independent
problem: its solution is lost

Phase saving: branch using the previous value

▶ If the previous solution still stands, it will be found efficiently

Synergy with clause learning

▶ Intuitively, we want to learn clauses that constrain variables in an unsatisfiable core: recently learned clauses are still
asserting if we use phase saving

Search Techniques 49 / 55

Clauses Deletion

A SAT solver typically fail (tenth of) thousands times per second

▶ Learn a new clause on every fail

▶ Learned clauses tend to be long

Unit propagation via watched literal is efficient, but still accounts for most of the run time

Moreover, not all clauses are equally useful, some never unit propagate

Can we reliably predict which clauses are more promising and forget the rest?

Search Techniques 50 / 55

Clause Activity

Some intuitive criteria:

▶ Length: long clauses unit propagate (probably) less often

▶ Activity: clauses with less active literals have (historically) unit propagated more often

Deleting long and inactive learned clauses is useful

Clause deletion is very important, but difficult to parameterized (how often?, how many?)

Length and activity are not perfect predictors

Search Techniques 51 / 55

Variable (in)dependence

Some clauses are long but useful

In general, a clause of length L can be satisfied in 2L − 1 ways

The clause x1 ∨ . . . ∨ x100 from the direct encoding of the CSP variable x ∈ {1, . . . , 100} can be satisfied in
only 100 ways (the variable takes exactly one of the 100 values)

▶ The unit literal xi unit propagates x̄j for all j ̸= i via pairwise or sequential clauses

Clauses involving inter-dependent literals are more likely to unit propagate: the implicit relation on
dependent variables is tighter

Search Techniques 52 / 55

Literal Block Distance

We want something efficient

Idea: variables that unit propagated at the same level tend to be more linked together

Literal Block Distance lbd(0)

Let level[l] be the decision level at which literal l was inferred.

lbd(c) = |{level[l] | l ∈ c}|

Solver “Glucose” was the first to use this idea of “Glue clauses” and was very successful [Audemard & Simon]

Search Techniques 53 / 55

Outline

1 Algorithms

2 Tree Search
The DPLL Solver

3 Clause Learning
The CDCL Solvers
Clause Learning, UIPs & Minimization

4 Search Techniques
Restarts
Search Heuristics
Clauses Deletion

5 Conclusions

Conclusions 54 / 55

What is a CDCL SAT Solver?

Extend DPLL SAT solver with: [DP60,DLL62]

▶ Clause learning & non-chronological backtracking [MSS96,BS97,Z97]

⋆ Learn First-UIP clauses [MSS96,SSS12]

⋆ Minimize learned clauses [SB09,VG09]

⋆ Opportunistically delete clauses (LBD) [MSS96,MSS99,GN02]

▶ Search restarts [GSK98,BMS00,H07,B08]

▶ Lazy data structures

⋆ Watched literals [MMZZM01]

▶ Conflict-guided branching
⋆ Activity-based branching heuristics [MMZZM01]

⋆ Phase saving [PD07]

▶ ...

Conclusions 55 / 55

	Algorithms
	Tree Search
	The DPLL Solver

	Clause Learning
	The CDCL Solvers
	Clause Learning, UIPs & Minimization

	Search Techniques
	Restarts
	Search Heuristics
	Clauses Deletion

	Conclusions

