

Algorithms for Computational Logic

SAT Algorithms

Emmanuel Hebrard (adapted from) João Marques Silva

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

Laboratoire conventionné avec l'Université Fédérale de Toulouse Midi-Pyrénées

2 Tree Search

LAAS	
CNRS	

How	to	Solve	SAT
	ιυ	JUIVE	JAI

- Tableau: Deductive/syntactic system
- DP: Resolution

	Davis & Putnam procedure in 1960	[DP60]
•	DPLL: Semantic system, tree search for a model, with unit propagation	
	Davis, Logemann & Loveland procedure in 1962	[DLL62]
•	CDCL: Conflict-Driven Clause Learning	
	Marques Silva & Sakallah in 1999	
	Moskewicz, Madigan, Zhao, Zhang & Malik in 2001	

• Local search and heuristics

- Resolution is a powerfull proof system, but DP is exponential in memory
- DPLL is memory efficient, but tree search is a weak proof system
 - The length of the shortest refutation is at least as long as in resolution
 - There are cases where it is exponentially larger
- CDCL is memory efficient, very efficient in practice, and as powerfull as resolution as a proof system

DPLL: Pseudocode

• Backtrack to *decision level* 2

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Tree Search	9 / 55

Algorithm: DPLL

```
while satisfiability = UNKNOWN do

if unit-propagate() then

if |unit-literals| = n then satisfiability \leftarrow SAT // a model is found

else

trail.push(|unit-literals|) // save current level

assign(select-lit()) // add a new true literal

else

if |trail| = 0 then satisfiability \leftarrow UNSAT // search tree exhausted

else

d \leftarrow unit-literals[trail.back()] // retrieve previous decision

while |unit-literals] > trail.back() do unassign-back() // backtrack

to-propagate \leftarrow trail.back()

trail.pop-back()

assign(\overline{d}) // branch out of previous decision
```

LAAS CNRS	Outline
1 Algorithms	
 2 Tree Search • The DPLL Solver 	
 3 Clause Learning • The CDCL Solvers • Clause Learning, UIPs & Minimization 	
 Search Techniques Restarts Search Heuristics Clauses Deletion 	
5 Conclusions	
LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	11 / 5

What is a CDCL SAT Solver?

• Extend DPLL SAT solver with:	[DP60,DLL62]
Clause learning & non-chronological backtracking	[MSS96,BS97,Z97]
★ Exploit UIPs	[MSS96,SSS12]
★ Minimize learned clauses	[SB09,VG09]
★ Opportunistically delete clauses	[MSS96,MSS99,GN02]
Search restarts	[GSK98,BMS00,H07,B08]
Lazy data structures	
★ Watched literals	[MMZZM01]
 Conflict-guided branching Activity-based branching heuristics 	[MMZZM01]
★ Phase saving	[PD07]
►	

How Significant are CDCL SAT Solvers?

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

- Any *cut* that separate the *decisions* from the *fail* in the decision graph
- Cuts correspond to clauses
 - $\varphi \vDash (a \land b \land c \land d \land e) \implies \bot: \varphi \vDash (\bar{a} \lor \bar{b} \lor \bar{c} \lor \bar{d} \lor \bar{e})$
 - $\varphi \vDash (a \land b \land e) \implies \bot : \varphi \vDash (\bar{a} \lor \bar{b} \lor \bar{e})$
 - $\varphi \vDash (g \land j \land k) \implies \bot : \varphi \vDash (\bar{g} \lor \bar{j} \lor \bar{k})$
 - $\varphi \models (g \land I) \implies \bot : \varphi \models (\bar{g} \lor \bar{I} \lor \bar{k})$
- DPLL (bactracks) equivalent to learning that *one decision must be changed*
- CDCL learn non-trivial cuts

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

lause Learning

LAAS CNRS

Clause Learning

- Learnt clause prevent the algorithm from repeating the same mistake later on
- Consider what DPLL would do next:
 - Explore branch $a \wedge b \wedge c \wedge \bar{e}$
 - Explore branch $a \wedge b \wedge \overline{c} \wedge e$
 - Explore branch $a \wedge \overline{b} \wedge c \wedge e$
 - Explore branch $a \wedge \overline{b} \wedge \overline{c} \wedge e$
- Adding the clause (ā ∨ b ∨ ē) makes sure that the solver does not explore the last three branches

LAAS CNRS	Clause Learning and Resolution
Level Dec. Unit Prop. 0 \emptyset 1 x 2 y	$(\bar{a} \lor \bar{b}) \qquad (\bar{z} \lor b) \qquad (\bar{x} \lor \bar{z} \lor a)$ $ \qquad \qquad$
$3 \qquad z \qquad b \qquad b$	$(ar{x} \lor ar{z})$
 Analyze conflict Reasons: x and z ★ Decision variable & literals assigned at lower decision levels Create new clause: (x ∨ z̄) 	
• Can relate clause learning with resolution	
Learned clauses result from (selected) resolution operation	ons
LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	rning 17 / 55

Computing	a Cut
-----------	-------

- Computing a minimum cut is polynomial (e.g., with Edmonds–Karp algorithm)
 - But costly and more importantly, might often return the failed clause (not asserting!)
- Computing a cut by exploring the implication graph up from the fail
 - At any time the list of open nodes is a valid cut
 - ▶ removing a literal from the current cut and replacing it by its parents is a resolution step

19 / 55

Unique Implication Point (UIP)

A Unique Implication Point is a node of the current decision level such that any path from the decision variable to the conflict node must pass through it

- The decision variable is a UIP
- There might be other UIPs

LAAS-CNRS	
/ Laboratoire d'analyse et d'architecture des systèmes du CNRS	

Clause Learning

					C	lause Learning and Backjumping	5
Level	Dec.	Unit Prop.		Level	Dec.	Unit Prop.	
0	Ø			0	Ø		
1	x			1	x —	$\rightarrow \bar{z}$	
2	у						
3	z						
	(-)	(=) · · · · · · · · · · · · · · · · · ·	1 1 1 /			• • • • • • • • • • • • • • • • • • • •	

- Clause $(\bar{x} \vee \bar{z})$ is asserting at decision level 1 (it unit propagates at previous level)
- We want to learn UIP-clauses (clauses containing a UIP) because they are *asserting*
 - A learned clause is asserting if and only if it contains exactly one literal of the current level because literals from older levels are all falsified
 - A learned clause must contain at least one literal of the current level (since unit propagation did not detect an inconsistency at the previous level)
- Backjump to the highest level of any literal but the UIP

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	

Algorithm: CDCL

lause Learning

Implementing analyze-conflict

- We first need to encode the conflict graph
- The parents of a literal l node are the k-1 falsified literals of the clause that unit-propagated l
- For every variable x, store reason[x] the clause responsible for x's unit propagation
 - Encoding of the conflict graph
- Which cut(s) should we keep?
 - First UIP clauses

AAS

CNRS

Why are First UIP Good?

- Mainly empirical evidences
- Can be seen as a way to detect "hubs"
- How to effectively vaccinate a population against a contagious desease if you have only a limited number of doses?
 - Pick a person randomly, ask her to name a friend, give a vaccine shot to the friend
 - Repeat until there is no dose
- People nominated as friends are more likely to know many people, and hence be super-spreaders
- The decision at failure level is always a UIP (random)
- Other UIPs are "friends" (linked via unit propagation)

- Not all traversal orders reach the first UIP clause
 - ► E.g., resolve *c* then resolve *a*
- Solution: resolve literals in reverse chronological order (of unit propagation)
- The first UIP literal is not resolved until all its descendants are
 - By definition, once all its descendants are resolved, it is the only literal of the current level and the exploration can stop

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Clause Learning

27 / 55

Implementation

- Data structures
 - level [Variable : x] \mapsto int
 - reason [Variable : x] \mapsto Clause
 - Change assign(Literal:I) and unassign-back(Literal:I)
- Functions
 - ► analyze-conflict(Clause:c) → Clause
 - ▶ backjump(Clause:c) \mapsto Boolean

the decision level at which x was unit propagated the clause responsible for x's unit propagation

analyze conflict on clause c and returns a firt UIP clause

returns \mathbf{false} if the search tree is exhausted and \mathbf{true} otherwise

Algorithm: First UIP

```
repeatforeach p \neq l \in reason \setminus seen doadd p to seenif level[p] = |trai|| then| n_{cur} \leftarrow n_{cur} + 1else| add p to learntwhile unit-literals[i] is not in seen do i \leftarrow i - 1l \leftarrow unit-literals[i]reason \leftarrow reason[l]n_{cur} \leftarrow n_{cur} - 1until n_{cur} > 0add the last explore literal l to learnt
```


/ La@ratoite d'anaiyse at clarchitecture des systèmes du CNRS

Liause Learning

[SB09]

AAS

CNRS

- Learn clause $(\bar{w} \lor \bar{x} \lor \bar{c})$ Learn clause $(\bar{w} \lor \bar{x} \lor \bar{c})$
- Cannot apply self-subsuming resolution
 - Resolving with reason of c yields $(\bar{w} \lor \bar{x} \lor \bar{a} \lor \bar{b})$
- Can apply recursive minimization
- Learn clause $(\bar{w} \vee \bar{x})$

- Marked nodes: literals in learned clause
- Trace back from *c* until marked nodes or new decision nodes
 - Learn clause if only marked nodes visited

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Clause Learning	31 / 55

- Let sat-sol be a randomized SAT solver, and x be a SAT instance
- The *duration* of a run of sat-sol(x) depends on the random seed
- SAT solvers are Las-Vegas algorithms: guaranteed correctness, unknown runtime
 - Their runtime distribution can be leveraged to improve their efficiency !
- This is true of all exact solvers (MIP, CSP, etc.)

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Search Techniques	33 / 55

Heavy tails

- Runtime distributions are rarely Gaussian
- Often Heavy tailed
- The average may be greatly skewed to the right

• Pigeon hole formula $PHP^{n \to n-1}$:

Pigeon 1 needs a hole Pigeon n needs a hole Hole 1 can contain at most 1 pigeon Hole 2 can contain at most 1 pigeon

Hole n - 1 can contain at most 1 pigeon

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Search Techniques	35 / 55

LAAS CNRS

Example: pigeon hole

• DPLL on the Pigeon hole formula takes exponential time

 $(x_{1,1} \lor x_{1,2} \lor \ldots \lor x_{1,n-1} \lor x_1) \land$

Pigeon 1 needs a hole

- Variable x_1 , if true, allows Pigeon 1 to have its own hole, making the problem easy
- If Variable x_1 is set to false, the problem is not satisfiable, and it takes a time exponential in n to prove it
- If we suppose that the solver branch on x_1 first and uniformly randomly pick the value true or false:
 - It will solve the problem in under a second with probability $\frac{1}{2}$
 - It will solve the problem in $\Theta(2^n)$ time with probability $\frac{1}{2}$
 - In expectation: $\Theta(2^{n-1})$ time!

CNRS

Search Restarts I

- What if we *restart* the solver if no solution is found after 1s?
- Chances of taking more than 10 second is $\frac{1}{2^{10}}$
- Search restarts can reduce the runtime expectation when the runtime distribution is heavy tailed

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Search Techniques	37 / 55

- When a time limit au is reached, we stop and resume search from the start
- Let t be a random variable equal to the runtime of the solver

$$egin{aligned} T &= & p(t \leq au) \cdot \mathbb{E}_p[t \mid t \leq au] + (1 - p(t \leq au)) \cdot (au + T) \ T &= & \mathbb{E}_p[t \mid t \leq au] + rac{(1 - p(t \leq au)) au}{p(t \leq au)} \end{aligned}$$

- Simple Markov Decision Process with two states ("solved" and "not solved")
 - There is a stationary (constant) policy au^* that minimizes the runtime $T(au^*)$

 When the expectation of the runtime is unknown, the Luby's universal strategy guarantees a runtime of T(τ*) log T(τ*)

$$\tau_i = \begin{cases} 2^{k-1}, \text{ if } i = 2^{k-1} - 1\\ \tau_{i-2^{k-1}+1}, \text{ if } 2^{k-1} \le i < 2^k - 1 \end{cases}$$

<i>i</i> :	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
k :	1	2	2	3	3	3	3	4	4	4	4	4	4	4	4	5
2^{k-1} :	1	2	2	4	4	4	4	8	8	8	8	8	8	8	8	16
$ au_i$:	1	2	2	4	2	2	4	8	2	2	4	2	2	4	8	16

• In practice, the geometric sequence $\tau_i = f^i$ works well

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Search Techniques	39 / 55

Search Heuristics

- Unit propagation reduce the size of search tree by cutting branches
- The branching choice also has an impact on the size of the tree
 - It can have a huge impact, but it is hard to know which choice is best
- Some principles:
 - ▶ If we are in an *unsatisfiable* subproblem, try to detect it as soon as possible
 - \star By branching first on part of the problem that is most *constrained*
 - If we are in a *satisfiable* subproblem, try to stay on a branch leading to a solution
 - ★ Choice of the most *promising* branch

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Search Techniques	41 / 55

Minimum Domain

Minimum Domain / Degree

- Same principles in SAT and all other tree-search methods:
 - Variable ordering: on which variable should we branch first?
 - \star The one on which we will fail on both subtrees, to get out of the *unsatisfiable* branch
 - \star Otherwise, on the one that will *minimize* the size of the subtrees
 - Value ordering: on which variable should we branch first?
 - ★ The one most likely to lead to a solution
 - \star If the current subtree is not satisfiable, it does not matter (much), both branches must be explored
 - Most of the time is spent getting out of *unsatisfiable subtrees*: the variable ordering is more important than the value ordering
 - \star When solving an optimization problem top-down, finding good quality solutions quickly is important
 - ★ Interaction with clause-learning

LAAS-CNRS	
/ Laboratoire d'analyse et d'architecture des systèmes du CNRS	

Search Techniques

Variable Ordering

- Variable State Independent Decaying Sum (VSIDS)
- Assigns a weight to variables *involved in conflicts*: activity score
- Variants exist:

4AS

CNRS

- Increment weight of the literals in the learned clause
- ▶ Increment weight of the literals in the learned clause and all variables resolved during conflict analysis
- The activity score A(i) of a variable x_i is the *decayed* sum of the weight increments:
 - Let b_j(i) be equal to 1 if variable x_i's activity was incremented in the j-th fail, and let 0 < γ ≤ 1 be a constant, and k the number of fails</p>

$$A(i) = \sum_{j=1}^{k} \gamma^{k-j} b_j(i)$$

subproblem size up to 2^8

- When backjumping with an asserting clause, we undo potentially useful search
- Suppose that the variables between the conflict and assertion levels encode a (relatively) independent problem: its solution is lost
- Phase saving: branch using the previous value
 - If the previous solution still stands, it will be found efficiently
- Synergy with clause learning
 - Intuitively, we want to learn clauses that constrain variables in an unsatisfiable core: recently learned clauses are still asserting if we use phase saving

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Search Techniques	49 / 55

LAAS	
CNRS	/

Clauses	Deletion
---------	----------

- A SAT solver typically fail (tenth of) thousands times per second
 - Learn a new clause on every fail
 - Learned clauses tend to be long
- Unit propagation via watched literal is efficient, but still accounts for most of the run time
- Moreover, not all clauses are equally useful, some never unit propagate
- Can we reliably predict which clauses are more promising and forget the rest?

- Some intuitive criteria:
 - Length: long clauses unit propagate (probably) less often
 - ► Activity: clauses with less active literals have (historically) unit propagated more often
- Deleting long and inactive learned clauses is useful
- Clause deletion is very important, but difficult to parameterized (how often?, how many?)
- Length and activity are not perfect predictors

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS	Search Techniques	51 / 55

Variable (in)dependence

- Some clauses are long but useful
- In general, a clause of length L can be satisfied in $2^L 1$ ways
- The clause x₁ ∨ ... ∨ x₁₀₀ from the direct encoding of the CSP variable x ∈ {1,...,100} can be satisfied in only 100 ways (the variable takes exactly one of the 100 values)
 - The unit literal x_i unit propagates \bar{x}_j for all $j \neq i$ via pairwise or sequential clauses
- Clauses involving *inter-dependent* literals are more likely to unit propagate: the implicit relation on dependent variables is tighter

- We want something *efficient*
- Idea: variables that unit propagated at the same level tend to be more linked together

Literal Block Distance <i>lbd</i> (0)				
Let level[/] be the decision level at which literal / was inferred.				
$\textit{lbd}(c) = \{ level[\textit{l}] \mid \textit{l} \in c \} $				
• Solver "Glucose" was the first to use this idea of "Glue clauses" and was very successful	[Audemard & Simon]			

LAAS-CNRS			
/ Laboratoire d'	analyse et d'architectu	ire des systèmes du CNRS	

Search Techniques

What is a CDCL SAT Solver?

• Extend DPLL SAT solver with:	[DP60,DLL62]
 Clause learning & non-chronological backtracking 	[MSS96,BS97,Z97]
★ Learn First-UIP clauses	[MSS96,SSS12]
★ Minimize learned clauses	[SB09,VG09]
★ Opportunistically delete clauses (LBD)	[MSS96,MSS99,GN02]
Search restarts	[GSK98,BMS00,H07,B08]
Lazy data structures	
★ Watched literals	[MMZZM01]
 Conflict-guided branching 	
★ Activity-based branching heuristics	[MMZZM01]
★ Phase saving	[PD07]
▶	

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Conclusions