

Algorithms for Computational Logic

Introduction

Emmanuel Hebrard (adapted from João Marques Silva, Inês Lynce and Vasco Manquinho)

Outline

- Introduction to Boolean Satisfaction
- 2 Boolean Reasoning

- Introduction to Boolean Satisfaction
 - Propositional Logic
 - The Satisfiability Problem
 - Some Fragments of Propositional Logic
- Boolean Reasoning
 - Unit Propagation
 - Resolution
 - Proof Systems

Propositional Logic

Proposition

A proposition is an assertion that can be:

- assigned a truth value (true or false)
- written using atomic propositions (or atoms) and logic connectors

An atom is a proposition written using a unique symbol.

- Atomic propositions:
 - ▶ "Adam follows the lecture", "Adam works at home", "Adam cheats at the exam", "Adam passes the exam"
- Propositions:
 - "if Adam does not listen the lecture and does not work at home then he will not pass the exam unless he cheats

Formulae (syntax)

A non-atomic proposition (*Formula*) φ is either:

- an atom
- the negation $\neg \psi$ of another proposition ψ
- the concatenation of two or more propositions φ_1 and φ_2 by a logical connector $\{\land, \lor, \rightarrow, \oplus, \ldots\}$

(("listen lecture" \land "work at home") \lor "cheat" $\lor \neg$ "pass exam") $((\neg \text{``cheat''} \land \text{``pass exam''}) \lor \neg \text{``get diploma''})$

AS-CNRS aboratoire d'analyse et d'architecture des systèmes du CNRS

Models

Models (interpretations)

A model \mathcal{A} is a mapping from atoms in \mathcal{X} to $\{\mathbf{true}, \mathbf{false}\}$. We write $\mathcal{A} \models x$ for "Atom x is true in model \mathcal{A} "

A proposition φ written using atoms in \mathcal{X} can be interpreted (given a truth value) using a model \mathcal{A} on \mathcal{X} :

- if φ is the negation of a proposition ψ , then $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \not\models \psi$
- if φ is a conjunction $\varphi_1 \wedge \varphi_2$, then $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \varphi_1$ and $\mathcal{A} \models \varphi_2$
- if φ is a disjunction $\varphi_1 \vee \varphi_2$, then $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \varphi_1$ or $\mathcal{A} \models \varphi_2$
- Ex: "listen lecture" \land "work at home" $\land \neg$ "cheat" $\land \neg$ "pass exam" $\land \neg$ "get diploma"

(("listen lecture"
$$\land$$
 "work at home") \lor "cheat" $\lor \neg$ "pass exam") \land ((\neg "cheat" \land "pass exam") $\lor \neg$ "get diploma")

"listen lecture" "work at home" "cheat" "pass exam" "get diploma" false false true true true

AS-CNRS aboratoire d'analyse et d'architecture des systèmes du CNRS

The Satisfiability Problem

SAT

- ullet data: A Boolean formula ϕ
- **question**: Does there exist an interpretation that satisfies ϕ ?
- A formula is satisfiable iff there exists an interpretation that satisfies it
- ullet A formula φ is *unsatisfiable* iff there is no interpretation that satisfies it
 - Write it UNSAT (φ)
- A formula is valid / a tautology iff all interpretations satisfy it
 - Equivalent to UNSAT $(\neg \varphi)$
- A formula ψ is an *implicate* of φ iff all interpretations satisfying φ also satisfy ψ
 - Equivalent to UNSAT $(\varphi \land \neg \psi)$
- ullet A formula ψ is an *implicant* of φ iff φ is an *implicate* of ψ

Examples of Applications

- Linux package upgrade
 - ► The Eclipse foundation uses Daniel le Berre's SAT solver **SAT4j** to solve this problem
 - ► Equinox/p2/CUDFResolver
- (Re-)Attribution of the TV radiospectrum by the Federal Communications Commission (FCC) in 2017
 - ▶ The radiofrequency allocation problem corresponds to *Graph Coloring*
 - ★ Vertices are broadcasters, colors are frequencies
 - ★ Easy to encode as SAT
 - Reverse auction: the FCC buys frequencies and starts with high quotes that decrease at each round
 - ★ Stops when it is *not* possible to assign frequencies to broadcasters who opted out
 - ► Critical to *prove* unsatisfiability (the auction yielded \$20 billion)

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

ntroduction to Boolean Satisfaction

0 / 27

Cook-Levin Theorem

 \bullet SAT is in NP, the interpretation σ that satisfies it is a polynomial certificate

Théorème de Cook-Levin

SAT is NP-complete

- ► At least as hard as any problem in NP
- If SAT is in P then P = NP

- Fragments of SAT are particular case defined by the *language*
 - ▶ Using only negation (\neg) , disjunction (\lor) and conjunction (\land) is not restrictive

Disjunctive Normal Form

- Disjunctive normal form:
 - Disjunction of conjunctions (sum) of literals (products)
 - $\blacktriangleright \text{ Ex: } (\neg a \land b \land c) \lor (\neg b \land \neg c) \land (a \land \neg b)$
- Every product is an *implicant*, and corresponds to an interpretation
- Satisfiability of a DNF is easy

- Conjunctive normal form:
 - ► Conjunction of disjunctions of literals (clauses)
 - $\blacktriangleright \quad \mathsf{Ex:} \ (\neg a \lor b \lor c) \land (\neg b \lor \neg c) \land (a \lor \neg b)$
- ullet For any formula φ , there is a CNF formula φ' such that
 - ▶ SAT $(\varphi) \iff$ SAT (φ')
 - ▶ $|\varphi'| \in \mathcal{O}(|\varphi|^c)$ for some constant c
- Every clause is an implicate
- Validity of a CNF is easy

Horn Clauses

- Horn clause:
 - ► Clause with at most one positive literal
 - $\blacktriangleright \quad \mathsf{Ex:} \ (\neg a \lor \neg c \lor b) \land (\neg b \lor \neg c) \land (\neg b \lor a)$
 - ► Equivalent to implications
 - ★ $(a \land c \Rightarrow b) \land (b \land c \Rightarrow false) \land (b \Rightarrow a)$

- Comments
- Header [#variables(=5)] [#clauses(=7)]
- Variables are numbered 1 to n
- One line per clause '0' is a delimiter
- positive (negative) numbers are positive (negative) literals
 - $\qquad \qquad (\neg x_1 \lor x_3 \lor \neg x_5 \lor x_4)$

- c This line is a comment.
- p cnf 5 7
- -1 3 -5 4 0
- 2 3 0
- 1 5 0
- -3 -4 0
- -1 2 4 0
- -2 0
- 2 3 5 0

Basic definitions

- Typename/classes
 - ▶ Variable: used for indexing \rightarrow e.g., int from 0 to n-1
 - ▶ Literal: used for indexing \rightarrow e.g., int from 0 to 2n-1
 - ▶ TruthValue: three possibility (true, false, undef) \rightarrow {1,0,-1}
 - ► Clause: iterable list of literals
- Functions on variables

▶
$$pos(Variable:x) \mapsto Literal x$$
 (e.g., $2x + 1$)
▶ $neg(Variable:x) \mapsto Literal \neg x$ (e.g., $2x$)

Functions on literals

▶ sign(Literal:I)
$$\mapsto$$
 {false, true}
 (e.g., I%2)

 ▶ not(Literal:I) $\mapsto \neg I$
 (e.g., I^1)

 ▶ var(Literal:I) $\mapsto x$
 (e.g., I/2)

Data structures

Data structures

▶ model [Variable : x] \mapsto TruthValue

stores the current truth value of x

▶ clauses [Literal : I] \mapsto [Clause,...]

list of clauses containing literal I

unit-literals

stack of true literals (efficient push(Literal:I) and Literal:back() and pop-back())

Functions

val(Variable:x) → TruthValue

truth value of variable x

► falsified(Literal:/) → Boolean

literal is falsified in model

▶ satisfied(Literal:I) \mapsto Boolean

literal is satisfied in model

IN/OUT

- ▶ Functions from-dimacs(int:d) \mapsto Literal and to-dimacs(Literal:l) \mapsto int
- ► Functions read-dimacs() and write-dimacs()

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Outline

- Propositional Logic
- The Satisfiability Problem
- Some Fragments of Propositional Logic

2 Boolean Reasoning

- Unit Propagation
- Resolution
- Proof Systems

A clause forbids exactly one tuple

$$(\bar{x} \lor y \lor z \lor \bar{v} \lor \bar{w}) \iff \neg(x \land \bar{y} \land \bar{z} \land v \land w)$$

- What can we deduce by looking at just one clause?
- Nothing unless it is a unit clause (p): then we deduce that the literal p is true
 - \triangleright x is true if p = x
 - x is false if $p = \bar{x}$
- If the clause has two (independent) literals, any one can be false, providing that the other is true
- Incomplete proof system (e.g. $(x \lor a) \land (\bar{x} \lor a) \land (\bar{y} \lor \bar{a}) \land (y \lor \bar{a})$)

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Unit Propagation

• However it propagates: if we have the unit literal p, a clause containing \bar{p} can be reduced, and maybe become unit, triggering more unit propagation

$$(\bar{x} \vee y \vee z \vee \bar{v} \vee \bar{w}) \wedge (\bar{p} \vee x) \wedge (\bar{p} \vee \bar{y}) \wedge (q \vee \bar{z}) \wedge (q \vee v) \wedge (p) \wedge (q \vee w) \wedge (\bar{q} \vee \bar{x} \vee y)$$

- (p) is a unit clause
- (x) and (\bar{y})
- \bullet (\bar{q}) is a unit clause
- (\bar{z}) , (v) and (w) are unit clauses
- Unit propagation produces an empty clause

- Unit propagation solves *Horn*-SAT
- If a Horn-SAT formula has no unit clause, then every clause has at least one negative literal
 - ▶ The model with all variables false satisfies the formula
- Otherwise, unit propagate until reaching an inconsistency or a subformula without unit clauses

Boolean Reasoning

21 / 37

Implementing Unit Propagation

• A clause can either be:

? ? ?

► Satisfied iff it contains at least one true literal

► Falsified iff it contains only false literals

lacktriangle Unit iff it contains a single unknown literal, and n-1 false literals

▶ Unresolved iff it contains no true literal and at least two unknown literals

Unit propagation algorithm (counters)

```
Organise clauses per literals (Clauses(I)) is the set of clauses containing literal I) keep an initially null counter \#f_i of false literals for each clause c_i Put all unit clauses (true\ literals) in a list while There\ is\ a\ non-processed\ true\ literal\ I\ do mark I as processed foreach c_i\in Clauses(I) do increment \#f_i // at most once per literal: O(s) if \#f_i=|c_i| then return FAIL if \#f_i=|c_i|-1 then find the last literal and add it to the list of true literals // \Theta(|c_i|) at most once per clause: O(s)
```

- Let φ have n variables and m clauses, and let s be the total number of literals $s = \sum_{i=1}^{m} |c_i|$
- Worst case: every variable x is unit propagated (x if $|Clauses(x)| \ge |Clauses(\bar{x})|$, and \bar{x} otherwise)
- Overall linear time $\Theta(s)$ amortized down a branch

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

Boolean Reasoning

02 / 27

Watched Literals

- Invariant Watch only two non-false literals per clause
 - ► Watch(I) is the list of clauses that watches literal I
- Non-watched literals can become false, it cannot make the clause unit or falsified as long as two unknown literals remain
- When a watched literal become false, a replacement must be found
- When no replacement can be found, the clause is either unit or falsified
- Nothing to do when backtracking: the literals watched at level i cannot be false at level i-1

- Scan the clause from first to last literal: possibly $\Theta(|c_i|)$ scans each costing $\Theta(|c_i|)$
 - ► Quadratic
- Store the initial position of the watch and scan forward
 - ► Linear but we must update the position of the watchers when backtracking
- Circular list: scan forward, but past the end and back to the current position
 - ► The clause is scanned at most twice: linear and no need to do anything when backtracking!

Boolean Reasoning

25 / 37

Average Complexity

- Let n be the number of variables, m be the number of clauses, $s = \sum_{i=1}^{m} |c_i|$ be the overall size of the formula, k be the number of true literals after unit propagation
- Consider first the clauses that unit propagated
 - ► They contain only variables among the *k* true literals
 - ▶ In order to propagate them, every literal must be explored (to increment the counter of find a new watched): it takes linear time in both cases call that O(K)
- ullet Consider now the m' clauses that did not unit propagate (and let s' be their total size)
 - ▶ The counters algorithm increments the counters of every clause containing one of the *k* true literals
 - ★ The average number of clauses per literal is $\frac{s'}{n}$ so $\Theta\left(\frac{ks'}{n}\right)$ time in average
 - Overall: $\Theta(O(K) + \frac{ks'}{n})$ time
 - ▶ The watched algorithm increments finds a new wathed literal for each of the clauses that watch it
 - ★ A literal is watched by $\frac{m'}{n}$ of these clauses in average
 - ★ The probability that a random literal is not false is $\frac{n-k}{n}$, so the expected number of literals to scan to find a valid one to watch is $\frac{n}{n-k}$
 - ▶ Overall: $\Theta(O(K) + \frac{km'}{n-k})$ time

Structure

▶ watches [Literal : I] \mapsto [Clause,...]

list of clauses watching literal I

▶ int:to-propagate

the first non-unit-propagated literal in unit-literals

Functions

- ▶ get-rank(Clause:c, Literal:I) \mapsto {0, 1}
- get-index(Clause:c, $\{0,1\}:r$) \mapsto int
- set-watcher(Clause:c, Literal:/, {0,1}:r)
- assign(Literal:/)

0 if I is the first watched in c, 1 otherwise

index of the (r+1)-th watched in c

set I as (r+1)-th watcher of c

push I onto unit-literals and set model [var(I)]

AAS-CNRS Laboratoire d'analyse et d'architecture des systèmes du CNRS

27 / 37

Algorithm

Unit propagation algorithm (watched literals)

```
Algorithm: unit-propagate()
while to-propagate < |unit-literals| do
     / ← not(unit-literals /to-propagate /)
    if not unit-propagate(I) then
      return false
    to-propagate \leftarrow to-propagate +1
```

Algorithm: unit-propagate(*I*)

return true

Input: A non-unit propagated false literal / Output: false in case of a contradiction, true

otherwise

```
foreach c \in \text{clauses}[I] do
      r \leftarrow \text{get-rank}(c, I); start \leftarrow i \leftarrow \text{get-index}(c, r)
      p \leftarrow c[\text{get-index}(c, 1-r)]
      if not satisfied(p) then
            while true do
                  i \leftarrow i + 1
                  if i = |c| then i \leftarrow 0
                  if i = start then break
                  if c[i] \neq p then
                        if not falsified(c[i]) then
                              set-watcher(c, c[i], r)
                              break
            if i = start then
                  if falsified(p) then return false
                  assign(p)
return true
```

Laboratoire d'analyse et d'architecture des systèmes du CNRS

• Resolution rule: [DP60,R65]

$$\frac{(\alpha \vee x) \qquad (\beta \vee \bar{x})}{(\alpha \vee \beta)}$$

 \blacktriangleright Complete proof system for propositional logic: If the formula φ is not satisfiable, then there is sequence of resolution steps that produce the *empty clause* \bot

• Self-subsuming resolution (with $\alpha' \subseteq \alpha$):

[e.g. SP04,EB05]

$$\frac{(\alpha \vee x) \qquad (\alpha' \vee \bar{x})}{(\alpha)}$$

LAAS-CNRS / Laboratoire (Paharyse et d'architecture des systèmes du CNRS

Boolean Reasoning

29 / 37

Resolution and $2\text{-}\mathrm{SAT}$

Theorem

Resolution solves 2-SAT in polynomial time

- Resolution is a complete refutation system for SAT (and hence for 2-SAT)
- Resolvant clauses have at most 2 literals
 - ▶ There are at most n^2 binary clauses

 $(\neg y \lor z) \land (\neg z \lor \neg x) \land (x \lor \neg z) \land (\neg z \lor \neg z) \land (y \lor y) \land (y \lor z) \land (z \lor z) \land (x \lor x)$

Algorithm

- $x \lor y$ is equivalent to $\neg x \implies y$ and $\neg y \implies x$
- Add transitive edges
 - ▶ If there is an inconsistency, then the formula is not satisfiable
 - If not, it is satisfiable, because the choice $x \implies \neg x$ closes a cycle only if there is a path $\neg x \implies x$

AS-CNRS aboratoire d'analyse et d'architecture des systèmes du CNRS

Proofs

- SAT is in **NP**: if an instance is satisfiable, it is possible to prove it efficiently
 - Just show a model and check clause by clause that is it correct (it is a certificate)
- What about the question "is φ unsatisfiable?", or "is φ a tautology?"
 - ▶ There might not exist short certificates for problems in coNP, but we can provide a *long* one
- Proof system: maps to every unsatisfiable formula φ a refutation R
 - ▶ There is a polynomial algorithm (in |R|) to check the refutation proof
 - ★ Pebbling formulas

$$\varphi = (a \lor \neg b) \land (\neg a \lor c \lor \neg d) \land (a \lor c \lor \neg d) \land (\neg c \lor \neg e) \land (\neg c \lor e) \land (c \lor d)$$

$$\begin{array}{llll} c_1 & = & (\neg c \lor e) & \in \varphi \\ c_2 & = & (\neg c \lor \neg e) & \in \varphi \\ c_3 & = & (\neg c) & \text{resolvant of } c_1 \text{ and } c_2 \\ c_4 & = & (a \lor c \lor \neg d) & \in \varphi \\ c_5 & = & (\neg a \lor c \lor \neg d) & \in \varphi \\ c_6 & = & (c \lor \neg d) & \text{resolvant of } c_4 \text{ and } c_5 \\ c_7 & = & (c \lor d) & \in \varphi \\ c_8 & = & (c) & \text{resolvant of } c_6 \text{ and } c_7 \\ c_9 & = & () & \text{resolvant of } c_3 \text{ and } c_8 \end{array}$$

Boolean Reasoning

33 / 37

Resolution proofs from tree search

$$\varphi = (a \lor \neg b) \land (\neg a \lor c \lor \neg d) \land (a \lor c \lor \neg d) \land (\neg c \lor \neg e) \land (\neg c \lor e) \land (c \lor d)$$

- Soundness: if there exists a resolution refutation then the formula is unsatisfiable
 - ▶ Resolution is a *sound* proof system simply because the resolution step is sound
- Completeness: if a formula is unsatisfiable then there exists a resolution refutation of that formula
 - ► Tree search is obviously a complete proof system
 - ► To every search tree we can associate a resolution proof
 - ► Therefore resolution is a *complete* proof system

Boolean Reasoning

35 / 37

Resolution: conciseness

- What does make a proof system good? (besides soundness and completeness)
- A good proof system is one that allows shorter proofs
 - $\,\blacktriangleright\,$ If refutations are polynomial size in general, then ${\bf NP}={\bf coNP}$
- For any tree search refutation, there is a resolution refutation of same size
- There exist formulas with short resolution refutation but exponential tree search refutations

Pigeon Hole Principle

If m > n there is no injective mapping of m objects onto n

$$PHP^{m \to n}: \qquad (x_{1,1} \vee x_{1,2} \vee \ldots \vee x_{1,n}) \wedge \qquad \qquad \text{Pigeon 1 needs a hole} \\ \ldots \\ (x_{m,1} \vee x_{m,2} \vee \ldots \vee x_{m,n}) \wedge \qquad \qquad \text{Pigeon m needs a hole} \\ \bigwedge_{1 \leq i < j \leq m} (x_{\overline{i},1} \vee x_{\overline{j},1}) \wedge \qquad \qquad \text{Hole 1 can contain at most 1 pigeon}$$

 $\bigwedge_{1 \leq i < j \leq m} (x_{j,n}^- \vee x_{j,n}^-) \qquad \qquad \text{Hole n can contain at most 1 pigeon}$

- Resolution refutations of the pigeon hole principle are exponential
- Using induction, for instance, one can make a linear size refutation