Safe and Dependable Physical Human-Robot Interaction in Anthropic Domains: State of the Art and Challenges

R. Alami, A. Albu-Schaeffer, A. Bicchi, R. Bischoff, R. Chatila, A. De Luca, A. De Santis, G. Giralt, J. Guiochet, G. Hirzinger, F. Ingrand, V. Lippiello, R. Mattone, D. Powell, S. Sen, B. Siciliano, G. Tonietti, L. Villani

 

Abstract

In the immediate future, metrics related to safety and dependability have to be found in order to successfully introduce robots in everyday environments. The crucial issues needed to tackle the problem of a safe and dependable physical human-robot interaction (pHRI) were addressed in the EURON Perspective Research Project PHRIDOM (Physical Human- Robot Interaction in Anthropic Domains), aimed at charting the new “territory” of pHRI. While there are certainly also “cognitive” issues involved, due to the human perception of the robot (and vice versa), and other objective metrics related to fault detection and isolation, the discussion in this paper will focus on the peculiar aspects of “physical” interaction with robots. In particular, safety and dependability will be the underlying evaluation criteria for mechanical design, actuation, and control architectures. Mechanical and control issues will be discussed with emphasis on techniques that provide safety in an intrinsic way or by means of control components. Attention will be devoted to dependability, mainly related to sensors, control architectures, and fault handling and tolerance. After PHRIDOM, a novel research project has been launched under the Information Society Technologies Sixth Framework Programme of the European Commission. This “Specific Targeted Research or Innovation” project is dedicated to “Physical Human-Robot Interaction: depENDability and Safety” (PHRIENDS). PHRIENDS is about developing key components of the next generation of robots, including industrial robots and assist devices, designed to share the environment and to physically interact with people. The philosophy of the project proposes an integrated approach to the co-design of robots for safe physical interaction with humans, which revolutionizes the classical approach for designing industrial robots – rigid design for accuracy, active control for safety – by creating a new paradigm: design robots that are intrinsically safe, and control them to deliver performance. This paper presents the state of the art in the field as surveyed by the PHRIDOM project, as well as it enlightens a number of challenges that will be undertaken within the PHRIENDS project.

Keywords: robotics; dependability; safety; human-robot interaction