Onboard Maneuver Planning for the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment within the DLR FireBird mission

G. Gaias, DLR/GSOC/Space Flight Technology Department

Workshop on Advances in Space Rendezvous Guidance
Contents

Overview of the AVANTI experiment

Overall Concept of the MAneuver Planner (MAP)

The Guidance Problem

The Computation of the Maneuvers

Example of a Rendezvous

Conclusions and Current Development Status
Contents

Overview of the AVANTI experiment

Overall Concept of the MAneuver Planner (MAP)

The Guidance Problem

The Computation of the Maneuvers

Example of a Rendezvous

Conclusions and Current Development Status
The FireBird Mission

- DLR Scientific Mission, based on BIRD-TET s/c bus
- Expected launch: late 2014/early 2015
- Orbit: Sun-synchronous, altitude 500-600 km
- Primary Objective: Earth observation, fire detection (infrared camera)
- Secondary Objectives: several scientific experiments

- **Autonomous Vision Approach Navigation and Target Identification (AVANTI)**
 - demonstration of autonomous rendezvous to (and departure from) non-cooperative client using vision-based navigation
 - 1 month of experiment campaign after in-orbit injection of a Picosat
AVANTI motivations

- **AVANTI is motivated by the following needs**
 - approach, identify, rendezvous with a
 - non-cooperative, passive client
 - from large distances (e.g., > 10 km)
 - in an autonomous, fuel efficient, safe manner

- **Angles-only navigation is an attractive solution**
 - low cost sensors (e.g., optical, infrared)
 - star trackers often onboard (e.g., Biros!)
 - simplicity, robustness, wide range

- but maneuvers are needed to reconstruct the relative state
AVANTI key functionalities

Key functions to be proven

- handover from ground-operations to autonomous vision-based navigation & control
- onboard processing of camera images and target identification
- real-time relative navigation based on Line-Of-Sight (LOS) info
- autonomous maneuver planning to accomplish a rendezvous (RdV)

Key performance to be proven

- LOS residuals below 40 arcsecs (half camera pixel size)
- relative orbit determination accuracy at 10% of range to client
- safe rendezvous operations between ±10 km and ±100 m
Background

- **August 2011, PRISMA - handover to OHB:** Formation Re-Acquisition
 - ground-in-the-loop, TLE + prototype of angles-only relative navigation filter

- **April 2012, PRISMA - extended mission phase:** ARGON
 Advanced Rendezvous Demonstration using GPS and Optical Navigation
 - ground-in-the-loop, image processing, angles-only relative navigation
 - man-in-the-loop, maneuver planning

- **AVANTI new challenges**
 - onboard processing of camera images and identification of Picosat
 - real-time relative navigation of Biros w.r.t. Picosat based on LOS info
 - autonomous maneuver planning
Contents

Overview of the AVANTI experiment

Overall Concept of the MAneuver Planner (MAP)

The Guidance Problem

The Computation of the Maneuvers

Example of a Rendezvous

Conclusions and Current Development Status
MAP objectives

- Generation of the open-loop, impulsive maneuvers’ profile to accomplish a rendezvous (RdV)

- Operational conditions
 - delta-v budget: fuel efficiency
 - safety: safe approach during RdV
 - system requirements: time constraints to cope with
 - communication/power/thermal pointing requirements
 - thrusters’ alignment

- Autonomy
 - simplicity, preference to closed-form solutions
Overall Concept - 1

Relative Orbital Elements (ROE) as state variables

\[\delta \alpha = \{ \delta a, \delta \lambda, \delta e_x, \delta e_y, \delta i_x, \delta i_y \}^T \]

\[P = a \delta \alpha \quad \text{description of each possible configuration} \]

\[
\delta \alpha = \begin{pmatrix}
\delta a \\
\delta \lambda \\
\delta e_x \\
\delta e_y \\
\delta i_x \\
\delta i_y
\end{pmatrix}
= \begin{pmatrix}
\delta a \\
\delta \lambda \\
\delta e \cos \varphi \\
\delta e \sin \varphi \\
\delta i \cos \theta \\
\delta i \sin \theta
\end{pmatrix}
= \begin{pmatrix}
\frac{(a - a_d)}{a_d} \\
u - u_d + (\Omega - \Omega_d) \cos i_d \\
\frac{(a - a_d)}{a_d} e \cos \omega - e_d \cos \omega_d \\
\frac{(a - a_d)}{a_d} e \sin \omega - e_d \sin \omega_d \\
i - i_d \\
(\Omega - \Omega_d) \sin i_d
\end{pmatrix}
\]

\(a, e, i, \Omega, \) and \(M \): Keplerian elements \(u \) mean argument of latitude

“d” servicer satellite
ROE meaning and dynamics

Linearized motion + disturbances

\[
\begin{pmatrix}
\delta \dot{a} \\
\delta \alpha
\end{pmatrix}
= \Phi(t - t_0)
\begin{pmatrix}
\delta \dot{a} \\
\delta \alpha
\end{pmatrix}
\]

\[
\Phi(t - t_0)
= \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\Delta t & 1 & 0 & 0 & 0 & 0 & 0 \\
\frac{\nu}{2} \Delta t^2 & \nu \Delta t & 1 & 0 & 0 & \mu \Delta t & 0 \\
0 & 0 & 0 & 1 & -\dot{\phi} \Delta t & 0 & 0 \\
0 & 0 & 0 & \phi \Delta t & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda \Delta t & 1
\end{bmatrix}
\]

differential drag | mean J_2
Overall Concept - 2

- ROE as state variables

- Layered approach
 - RdV defined as $P_0 \rightarrow P_F$ through intermediate P_i
 - i-th times: solution of the scheduling problem in compliance with time constraints
 - P_i at i-th times computed to optimize a criterion
 - MAP operatives modes:
 - set a criterion, evaluation of the relevance of some operational conditions
 - computation of the maneuvers to establish the P_i
Architecture

Input:
\[y_0, (P,t)_0, (P,t)_F, \text{ Mode} \]

Guidance
(Scheduling, Planning, Safety)

Control
(Maneuvers placement)

Maneuvers’ profile

Time constraints

Forbidden time intervals
Minimum time to first maneuver
Minimum time spacing between maneuvers
Contents

Overview of the AVANTI experiment

Overall Concept of the MAneuver Planner (MAP)

The Guidance Problem

The Computation of the Maneuvers

Example of a Rendezvous

Conclusions and Current Development Status
ROE sets planning: problem statement - 1

- Evolution of the motion through $\Phi(\Delta t)$, effect of the maneuvers at t_i: discontinuities in ROE

$\begin{align*}
P_1 &= \Phi_{1,0} P_0 + a(\Delta \delta \alpha)_1 \\
P_2 &= \Phi_{2,1} P_1 + a(\Delta \delta \alpha)_2 \\
&\quad \cdots
\end{align*}$

- End-conditions: achievement of P_F at t_F

$\begin{bmatrix}
\Phi_{F,1}^{\delta^*} & \cdots & \Phi_{F,m-1}^{\delta^*} & \Phi_{F,m}^{\delta^*} \\
\end{bmatrix}_{\text{first column}}
\begin{bmatrix}
\Phi_{F,1}^{\delta^*} & \cdots & \Phi_{F,m-1}^{\delta^*} & \Phi_{F,m}^{\delta^*} \\
\end{bmatrix}_{\text{last column}}
\begin{pmatrix}
x_{1,1} \\
\vdots \\
x_{1,m} \\
\vdots \\
x_{p,1} \\
\vdots \\
x_{p,m}
\end{pmatrix} = b_0$

$b_0 = P_F - \Phi_{F,0} P_0$

$(x_1, \cdots, x_p) \rightarrow (\Delta \delta \dot{a}, a\Delta \delta a, a\Delta \delta \lambda, a\Delta \delta \dot{i}_x, a\Delta \delta \dot{i}_y)$ or $(a\Delta \delta e_x, a\Delta \delta e_y)$
ROE sets planning: problem statement - 2

- **Functional cost**, convex form of the ROE jumps over \(m \) steps:
 \[
 J_{\text{plan}} = \sum_{i=1}^{m} (\Delta \delta \alpha)_i^T (\Delta \delta \alpha)_i
 \]

- ROE variations not due to the natural dynamics
- describes delta-v cost (Gauss’ variational equations in ROE)

- **Optimality conditions** to minimize \(J_{\text{plan}} \) reduce to a **linear system**
 in \(\Delta \text{ROE} \) due to:
 - structure of \(\Phi(\Delta t) \rightarrow \text{property:} \ \Phi(t_j, t_i) \cdot \Phi(t_i, t_k) = \Phi(t_j, t_k) \)
 - approximation in the relative eccentricity sub-problem
 (neglected terms of \(\dot{\phi}^2 \Delta t^2 \) and \(\dot{\phi}^3 \Delta t^3 \) after the 3rd jump)
ROE sets planning: problem solution

- **Optimal solution:**
 \[m - 1 \text{ opt. jumps } (\Delta \delta \alpha)^{\text{opt}} = M^{-1} b \]
 \[M \text{ and } b \text{ function of } (t_i, \nu, \mu, \lambda) \text{ and } (t_i, \dot{\varphi}) \]
 \[m \text{ end-cond. } P_F = \Phi_{F,0} P_0 + \Phi_{F,1} a(\Delta \delta \alpha)^{\text{opt}}_1 + \cdots + \Phi_{F,m} a(\Delta \delta \alpha)^{\text{opt}}_m \]

- **Generalization of a geometrical approach stepwise reconfiguration, disturbances compensation**

- **Suitable for automatic implementation**
Supported Operative Modes

<table>
<thead>
<tr>
<th>Modes</th>
<th>Motivations</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum delta-v</td>
<td>absolute min cost</td>
<td>small reconfigurations</td>
</tr>
<tr>
<td>direct $P_0 \rightarrow P_F$</td>
<td></td>
<td>accurate P_0</td>
</tr>
<tr>
<td>4 maneuvers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maximum observability</td>
<td>intensify maneuvers’ activity</td>
<td>large reconfigurations</td>
</tr>
<tr>
<td>user defined $t_i \Rightarrow P_i$</td>
<td>spread burns over horizon</td>
<td>uncertainty on P_0</td>
</tr>
<tr>
<td>($4 \times i$ maneuvers)</td>
<td>maneuver execution errors</td>
<td></td>
</tr>
</tbody>
</table>

Synergies

- criterion: minimum delta-v
Contents

Overview of the AVANTI experiment

Overall Concept of the MAneuver Planner (MAP)

The Guidance Problem

The Computation of the Maneuvers

Example of a Rendezvous

Conclusions and Current Development Status
Local control: problem statement - 1

- Establishment of a (intermediate) reconfiguration $P_{0,i} \rightarrow P_i$ over a finite control window $[u_{0,i}, u_{F,i}]$
 - fixed time, fixed end-conditions problem

- Total ROE jump pre-corrected by disturbances effects over the window
 - locally maneuvers computed with $\tilde{\Phi}$ of Kepler motion

- General framework for the p-pulses formulation:

\[
\begin{pmatrix}
\tilde{\Phi}_{F,1}B_1 & \cdots & \tilde{\Phi}_{F,p}B_p
\end{pmatrix}
\begin{pmatrix}
\delta v_1 \\
\vdots \\
\delta v_p
\end{pmatrix}
= n(\Phi_{F,0}^i P_{0,i})
= n\Delta \delta \tilde{\alpha}_i
\]
Local control: problem solution - 1

- Choice of $\delta \lambda$ instead of δu and structure of control input matrix B: where $\Delta \delta \alpha = B(u_M) \delta v$
 - out-of-plane and in-plane motions are decoupled

- Out-of-plane solution, deterministic:

 $u_{oop} = \arctan \left(\frac{\Delta \delta \tilde{i}_y}{\Delta \delta \tilde{i}_x} \right)$

 $|\delta v_n| = na \left\| \Delta \delta \tilde{i} \right\|$

 two options per orbit

- In-plane solution, underdetermined:

 minimum 2 impulses required \Rightarrow 6 unknowns in 4 equations
In-plane reconfiguration: possible maneuvers’ schemes

Reconfiguration: $\delta a_0 \rightarrow \delta a_f$, u_0, u_f

- in-plane
- out-of-plane

Enforcement of all End-conditions

u_{oop}, δv_{oop}
u_{ip}, δv_{ip}

Planning drivers:
- Thrusters’ duty cycle (# pulses)
- Attitude constraints (type of pulses)
- Safety & Visibility (ROE predictability)
- Determinism (computation of u_i)
- Delta-v cost

Generalty:
- $\Delta \delta$*
- $\Delta \delta a \neq 0 \land \Delta \delta^*$
- $\Delta \delta a = 0 \land \Delta \delta^*$
- $\Delta \delta a = 0 \land \Delta \delta \lambda \neq 0 \land \Delta \delta^*$
- $\Delta \delta a = 0 \land \Delta \delta \lambda = 0 \land \Delta \delta^*$

No-Type analytical
No-Type numerical

2-RT, 3-T, 3-T
2-RT, 2-T
Local control: problem solution - 2

AVANTI design drivers for the choice of the in-plane scheme:
- autonomy, predictability
- maneuvers’ spacing constraints
- communication pointing constraints
- minimum delta-v

Maneuvers are located in:
\[\bar{u} = \text{mod} \left(\arctan \left(\frac{\Delta \delta \tilde{e}_y}{\Delta \delta \tilde{e}_x} \right), \pi \right) \]
\[u_{ipj} = \bar{u} + k_j \pi, \quad j = 1 \ldots 3 \]
\[k_1 < k_2 < k_3 \]

Multiple (finite number) feasible solutions: one selected according to
1. preference to minor delta-v cost
2. preference to wider spacing between burns
Contents

Overview of the AVANTI experiment

Overall Concept of the MAneuver Planner (MAP)

The Guidance Problem

The Computation of the Maneuvers

Example of a Rendezvous

Conclusions and Current Development Status
Safety concept: ROE movement due to local control

Out-of-plane control

In-plane control

optimal / sub-optimal
Safety concept: ROE movement due guidance

- **Passive safety** related to $\phi = \varphi - \theta$
- Keep (anti) parallel $\delta e / \delta i$ during RdV
- Guidance to minimize the total ΔROE
- P_i distribute along the direction of ROE total variation
Example of a Rendezvous - 1

- **Scenario**
 - 500 km high, inclination 98 deg
 - B_{target}: 0.01 m2/kg
 - $\Delta B/B$: 2%

- **Input to MAP**
 - $P_0 = [5, 10000, -50, -250, -30, 200]$ m
 - $P_F = [0, 3000, 0, -100, 0, 100]$ m
 - t_F: 18 orbits after t_0
 - time constraints
 - mode: max-observability

Normalized $\delta e/\delta i$ plane

Total delta-v: 0.2168 [m/s]

Graphical representation
Example of a Rendezvous - 2

Relative eccentricity and inclination vectors

Drift and mean relative longitude over time
Contents

Overview of the AVANTI experiment

Overall Concept of the MAneuver Planner (MAP)

The Guidance Problem

The Computation of the Maneuvers

Example of a Rendezvous

Conclusions and Current Development Status
Conclusions and current development status

- **Impulsive MAaneuvers Planner** for formation reconfigurations and rendezvous for the AVANTI experiment (DLR/FireBird mission)
 - experiment operational conditions (onboard functioning, space segment requirements, ...)
 - design concept (simplicity and determinism)
 - provided an example of the MAP output

- **Current work**
 - flight software implementation
 - performance assessment in realistic simulation environment

- **Future work**
 - design of the AVANTI experiment campaign
ROE parameterization and safety concept

ARGON development and flight results

MAP development

Onboard Maneuver Planning for the AVANTI experiment within the DLR FireBird mission

- AVANTI experiment
- MAP Concept
- Guidance Solution
- Control Solution
- Example
- Conclusions