Abstract—In this paper, we focus on the L_1 gain analysis of linear time-invariant continuous-time positive systems. A positive system is characterized by the strong property that its output is always nonnegative for any nonnegative input. Because of this peculiar property, it is natural to evaluate the size of positive systems by the L_1 gain (i.e., the L_1 induced norm) in terms of the input and output signals. In contrast with the standard L_1 gain, in this paper, we are interested in the L_1 gain with weightings on the input and output signals. It turns out that the L_1 gain with weightings plays an essential role in the stability analysis of interconnected positive systems. More precisely, as a main result of this paper, we show that an interconnected positive system is stable if and only if there exists a set of weighting vectors that renders the L_1 gain of each positive subsystem less than unity. As such, using terminology in the literature, the weighting vectors functionate as "separators," and thus we establish solid separator-based conditions for the stability of interconnected positive systems. We finally illustrate that these separator-based conditions are effective particularly when we deal with robust stability analysis of positive systems against both L_1 gain bounded and parametric uncertainties.

Keywords: positive system, L_1 gain, stability, interconnection, separator.

I. INTRODUCTION

A linear time-invariant system is said to be positive if its state and output are both nonnegative for any nonnegative initial state and nonnegative input [2], [6]. This property can be seen naturally in biology, network communications, economics and probabilistic systems. Even though practical systems in these fields are nonlinear in nature, linear positive system models are still valid in several applications, ex., in age-structured population models in demography [2].

Due to the nonnegative property, it would be natural to evaluate the size of positive systems via the L_1 gain (i.e., the L_1 induced norm) in terms of the input and output signals. In general, a properly defined system-gain is useful for quantitative evaluation of the system performance. Indeed, it is shown in [3] that the L_1 gain of positive system plays an important role in robust stability analysis against dynamical and parametric uncertainties. In recent studies on switched positive systems [10], [11], the L_1 gain is also employed as a performance index to be minimized.

In contrast with the standard L_1 gain employed in the literature, we focus on the L_1 gain with weightings on the input and output signals in this paper. As a preliminary result, we first show that the L_1 gain of a positive system evaluated with fixed weighting vectors is characterized by linear scalar inequalities. This is a slight, but still meaningful extension of known results in [10], [11] where the standard L_1 gain is characterized by linear inequalities as well. Then, as a main contribution of this paper, we show that the L_1 gain evaluated with weightings plays an essential role in the stability analysis of interconnected positive systems. Here, we consider the interconnection among more than one positive subsystem requiring that the positivity property is still preserved under the interconnection (we call this property admissible, whose precise definition is given later). Then, we prove that an interconnected positive system is admissible and stable if and only if there exists a set of weighting vectors that renders the L_1 gain of each positive subsystem less than unity. Namely, the stability condition is separated into the L_1 gain condition for each subsystem, where they are correlated through the weighting vectors. As such, using terminology in the literature, we could say that the weighting vectors functionate as separators, which has played an important role in the stability analysis of general linear systems [4], [5], [7]. Thus, we establish solid separator-based conditions for the stability of interconnected positive systems. We emphasize that, in contrast with the case of general linear system analysis, the separator-based results for the interconnected positive system hold true irrespective of the number of the subsystems. These results surely bring new insights for the stability of linear positive systems.

We finally show that, as expected from [4], [5], [7], the separator-based conditions are effective particularly when we deal with robust stability analysis of positive systems against uncertainties. In the case where the set of uncertainties is characterized by L_1 gain boundedness with known weightings (i.e., separators), we derive a necessary and sufficient condition for the robust stability in terms of linear scalar inequalities (linear programming problems). On the other hand, in the case where the uncertainties are parametric, we derive sufficient conditions for the robust stability in which we seek for appropriate separators. Nevertheless, it is still possible to ensure their necessity under additional assumptions on the structure of the uncertainty. The effectiveness of these approaches is illustrated by an academic numerical example.

We use the following notations. For $A \in \mathbb{R}^{n \times n}$, the notation $\lambda(A)$ stands for the set of the eigenvalues of A. For given two matrices A and B of the same size, we write $A > B$ ($A \geq B$) if $A_{ij} > B_{ij}$ ($A_{ij} \geq B_{ij}$) holds for all (i,j), where A_{ij} (B_{ij}) stands for the (i,j)-entry of A (B).

In relation to this notation, we also define
The inverse of known conditions for the stability of Metzler matrices.

Lemma 1: [2] Let us consider the continuous-time LTI system described by

\[G(s) := \begin{bmatrix} A & B \\ C & D \end{bmatrix}. \]

(1)

Then, this system is positive if and only if \(A \) is Metzler, \(B \geq 0, C \geq 0, \) and \(D \geq 0. \)

In the sequel, we denote by \(\mathbb{M}_n \) the set of the Metzler matrices of the size \(n. \)

Theorem 2: [2], [6] For given \(A \in \mathbb{M}_n, \) the following conditions are equivalent.

(i) The matrix \(A \) is Hurwitz stable.

(ii) For any \(h \in \mathbb{R}^n \setminus \{0\}, \) the row vector \(h^T A \) has at least one strictly negative entry.

(iii) The inverse of \(A \) satisfies \(A^{-1} \leq 0. \)

(iv) There exists \(h \in \mathbb{R}^n_+ \) such that \(h^T A < 0. \)

In addition to the conditions in this theorem, the following simple lemma on the stability of block Metzler matrices plays an important role in this paper.

Lemma 1: For given \(P \in \mathbb{M}_n, Q \in \mathbb{R}^{n \times m}, R \in \mathbb{R}^{m \times n}, \) and \(S \in \mathbb{M}_m, \) the following conditions are equivalent.

(i) The Metzler matrix \(\Pi := \begin{bmatrix} P & Q \\ R & S \end{bmatrix} \) is Hurwitz stable.

(ii) The Metzler matrix \(P \) is Hurwitz stable and \(S - P R^{-1} Q \) is Metzler and Hurwitz stable.

(iii) The Metzler matrix \(S \) is Hurwitz stable and \(P - Q S^{-1} R \) is Metzler and Hurwitz stable.

Proof of Lemma 1: We will prove the equivalence of (i) and (ii). The equivalence of (i) and (iii) follows similarly.

(i) \(\Rightarrow \) (ii) Suppose (i) holds. Then, from (iv) of Theorem 2, there exist \(h_1 \in \mathbb{R}^n_+ \) and \(h_2 \in \mathbb{R}^n_+ \) such that

\[h_1^T P + h_2^T R < 0, \quad h_1^T Q + h_2^T S < 0. \]

(2)

The first inequality clearly shows that \(P \) is Hurwitz stable. Since \(P \) is Metzler and Hurwitz and hence \(P^{-1} \leq 0 \) from (iii) of Theorem 2, the first inequality implies \(h_1^T > -h_2^T R P^{-1}. \) From this and the second inequality, we have

\[h_2^T (S - P R^{-1} Q) < 0. \]

(3)

It is obvious that \(S - P R^{-1} Q \) is Metzler since \(P^{-1} \leq 0 \) and hence, again from (iv) of Theorem 2, we conclude that \(S - P R^{-1} Q \) is Hurwitz stable.

(iii) \(\Rightarrow \) (i) Suppose (ii) holds. Then, from (iv) of Theorem 2, there exists \(h_2 \in \mathbb{R}^n_+ \) such that (3) holds. It follows that there exists \(\varepsilon > 0 \) such that

\[h_2^T S - (h_2^T R + \varepsilon 1_n^T P) Q < 0. \]

(4)

If we define \(h_1 := -((h_2^T R + \varepsilon 1_n^T P)^{-1})^T, \) we have \(h_1 > 0 \) since \(P \) is Hurwitz and hence \(P^{-1} \leq 0. \) In addition, we readily obtain

\[h_1^T Q + h_2^T S < 0, \quad h_1^T P + h_2^T R = -\varepsilon 1_n^T < 0. \]

Again, from (iv) of Theorem 2, this shows that the Metzler matrix \(\Pi \) in (i) is Hurwitz stable.

III. \(L_1 \) Gain Analysis

Let us consider the positive system described by

\[G := \begin{bmatrix} \dot{x} = Ax + Bu, & x(0) = 0, \\ z = Cx + Dw \end{bmatrix} \]

where \(A \in \mathbb{M}_n \) and \(B \in \mathbb{R}^{n \times u}, \) \(C \in \mathbb{R}^{n \times n}, \) and \(D \in \mathbb{R}_+^{n \times u}. \)

For given weighting vectors \(q_z \in \mathbb{R}_+^n \) and \(q_w \in \mathbb{R}_+^u, \) we are interested in computing a variant of the \(L_1 \) gain of the system \(G \) defined by

\[\|G_{q_z, q_w}\|_{1+} := \sup_{\|q_w\|_1 = 1, w \in L_{1+}} \|q_z^T z\|_1. \]

(5)

Here, for \(s(t) : R \to R, \) we define

\[\|s\|_1 := \int_0^\infty |s(t)|dt \]

and \(L_{1+} \) is the set of element-wise positive and \(L_1 \) bounded signals as in

\[L_{1+} := \{ s(t) : \|s_i\|_1 < \infty, s_i(t) \geq 0 \quad \forall t \in [0, \infty) \}. \]

If we let \(q_z = 1_n \) and \(q_w = 1_u, \) the definition (5) reduces to the standard \(L_1 \) gain and this is employed as a performance index in recent studies on switched positive systems [10], [11]. The main contribution of this paper is to show that the extension of \(q_z \) and \(q_w \) to general positive vectors is surely meaningful. As clarified later on, this extension leads us to fruitful results, such as separator-based conditions for stability of interconnected positive systems.

The next theorem shows that the \(L_1 \) gain \(\|G_{q_z, q_w}\|_{1+} \) is characterized by linear inequalities.

Theorem 3: Let us consider the positive system \(G \) described by (4). Then, for given \(q_z \in \mathbb{R}_+^n, q_w \in \mathbb{R}_+^u, \) and \(\gamma > 0, \) the following conditions are equivalent.

(i) The matrix \(A \in \mathbb{M}_n \) is Hurwitz stable and \(\|G_{q_z, q_w}\|_{1+} < \gamma. \)

(ii) There exists \(h \in \mathbb{R}_+^n \) such that

\[h^T A + q_z^T C h^T B + q_w^T D - \gamma q_w^T] < 0. \]

(6)

(iii) The matrix \(A \in \mathbb{M}_n \) is Hurwitz stable and the following inequality holds:

\[q_z^T G(0) < \gamma q_w. \]

(7)

Here, \(G(s) \) is the transfer matrix of the system \(G. \)
Proof: (ii)\Rightarrow(i) Suppose (ii) holds for some $h > 0$. Then $A \in \mathbb{M}_n$ is obviously Hurwitz from (iv) of Theorem 2.

In addition, there exists $\varepsilon > 0$ such that
\[
\begin{bmatrix}
h^T A + q^T C & h^T B + q^T D - (\gamma - \varepsilon)q^T \varepsilon
\end{bmatrix} < 0.
\]

It follows that, for any $x \in \mathbb{R}^n$ and $w \in \mathbb{R}^{nw}$ satisfying
\[
x^T w^T \geq 0,
\]
we have
\[
\begin{bmatrix}
h^T A + q^T C & h^T B + q^T D - (\gamma - \varepsilon)q^T \varepsilon
\end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} \leq 0.
\] (8)

Since G is positive, we note that $x(t) \geq 0 \forall t \in [0, \infty)$ holds for any input signal $w \in L_{1+}$. From this fact and (8), we see that along the trajectory of the system G the following relation holds:
\[
h^T x(t) + (\gamma - \varepsilon)q^T w(t) \leq 0 \quad \forall t \in [0, \infty) \quad \forall w \in L_{1+}.
\] (9)

By integrating the above inequality over $[0, T]$, we have
\[
h^T x(T) + \int_0^T q^T z(t) dt - (\gamma - \varepsilon) \int_0^T q^T w(t) dt \leq 0 \quad \forall w \in L_{1+}.
\]

Moreover, by restricting w to be those such that $\|q^T w\|_1 = 1$ and letting $T \rightarrow \infty$, we see that
\[
\int_0^\infty q^T z(t) dt - (\gamma - \varepsilon) \leq 0
\]
holds for all $w \in L_{1+}$ such that $\|q^T w\|_1 = 1$. It follows that (i) is satisfied.

(i)\Rightarrow(ii) To prove the assertion by contradiction, suppose (ii) does not hold for any $h > 0$. Then only the following two cases are possible:

(a) A is not Hurwitz stable.
(b) A is Hurwitz stable but (6) does not hold for any $h > 0$.

Since (a) clearly contradicts (i), we only consider the case (b).

Then, from the strong alternative for linear inequalities [1, Section 5.8], there exist $g_1 \in \mathbb{R}^n_+$ and $g_2 \in \mathbb{R}^{nw}_+$, not simultaneously zero, such that
\[
A g_1 + B g_2 \geq 0, \quad q^T C g_1 + (q^T D - \gamma w^T) g_2 \geq 0.
\]

If $g_2 = 0$, we have $g_1 \neq 0, g_1 \geq 0$, and $A g_1 \geq 0$, which contradicts the Hurwitz stability of A (see (ii) of Theorem 2). Therefore it suffices to consider the case where A is Hurwitz stable and $g_2 \neq 0$. With this in mind, let us note that the first inequality above implies $g_1 \leq -A^{-1} B g_2$ since $A^{-1} \leq 0$ from (iii) of Theorem 2. By substituting this into the second inequality, we obtain $(q^T C g_1) - (\gamma w^T) g_2 \geq 0$. Moreover, since $g_2 \geq 0$ and $g_2 \neq 0$ as noted above, the following inequality must hold for at least one index j^* ($1 \leq j^* \leq nw$):
\[
(q^T C g_1)_{j^*} - \gamma w_{j^*} \geq 0.
\] (10)

In the following, we assume $q_{w,j^*} = 1$ without loss of generality. For a given $T > 0$, we also define a linear operator \mathbb{I}_T as follows:

\[
\mathbb{I}_T \zeta := \begin{cases}
\zeta(t) & (0 \leq t < T) \\
0 & (T < t)
\end{cases}
\]

Now we move on to the final stage of the proof. To this end, let us define a constant input signal $w_{st}(t) := e^*_T \in \mathbb{R}_+^{nw}$. We also denote by $z_{st}(t)$ the response of the system G for the input $w_{st}(t)$. Then, in view of the steady-state output, we see that for any $\varepsilon > 0$ satisfying $\gamma - \varepsilon > 0$, there exists $T_\varepsilon > 0$ such that
\[
q^T z_{st}(t) - q^T C(0) w_{st}(t) > -\frac{\varepsilon}{2} \quad \forall t > T_\varepsilon.
\]

From (10), this implies
\[
q^T z_{st}(t) - \gamma > -\frac{\varepsilon}{2} \quad \forall t > T_\varepsilon
\]
or equivalently,
\[
q^T z_{st}(t) > \gamma - \frac{\varepsilon}{2} > 0 \quad \forall t > T_\varepsilon.
\]

If we define another input signal $w_{st}^T(t) := \mathbb{I}_T w_{st}$ for a given $T(> T_\varepsilon)$ and denote by $z_{st}^T(t)$ the corresponding output signal, then we have $\|q^T w_{st}^T\|_1 = T, z_{st}^T(t) = z_{st}(t) (0 \geq t < T)$ and hence
\[
\frac{\|q^T z_{st}^T\|_1}{\|q^T w_{st}^T\|_1} = \frac{1}{T} \left(\int_0^T q^T z_{st}^T(t) dt + \int_T^\infty q^T z_{st}^T(t) dt \right)
\geq \frac{1}{T} \int_0^T q^T z_{st}^T(t) dt
\geq \frac{(\gamma - \varepsilon)(T - T_\varepsilon)}{2 T}
\geq \gamma - \frac{\varepsilon}{2} - \frac{(\gamma - \varepsilon) T_\varepsilon}{2 T}.
\]

Therefore, for the particular choice of
\[
T > \frac{\gamma - \frac{\varepsilon}{2} T_\varepsilon}{\frac{\varepsilon}{2} - \frac{\gamma - \varepsilon}{2} T_\varepsilon} > \frac{2\gamma - \varepsilon}{\varepsilon} T_\varepsilon(> T_\varepsilon),
\]
we have
\[
\frac{\|q^T z_{st}^T\|_1}{\|q^T w_{st}^T\|_1} > \gamma - \varepsilon.
\]

Since $\varepsilon > 0$ can be taken arbitrarily small, this implies
\[
\|G_{q, q_{w}}\|_1 = 1 + \gamma, \quad \text{which contradicts (i).}
\]

(ii)\Rightarrow(iii) The linear inequality (6) implies
\[
h^T > -q^T C A^{-1}, \quad h^T B + q^T D < \gamma w^T,
\]

since we have $A^{-1} \leq 0$ from (iii) of Theorem 2. By substituting the former into the latter, we obtain (7).

(iii)\Rightarrow(ii) Let us fix $v \in \mathbb{R}^n_+$ such that $v^T A < 0$. Then, the condition (7) implies that there exists $\varepsilon > 0$ such that
\[
q^T D + (\gamma q^T C A^{-1} + \varepsilon v^T) B < \gamma q^T w.
\]

If we define $h := (-q^T C A^{-1} + \varepsilon v^T)^T > 0$, we readily obtain
\[
h^T A + q^T C = \varepsilon v^T A < 0, \quad h^T B + q^T D - \gamma q^T w < 0.
\]

This clearly shows that (6) holds.
The following two corollaries are direct consequences of the condition (iii) in Theorem 3.

Corollary 1: For given positive and stable system G and $q_z > 0$ and $q_w > 0$ of compatible dimensions, the L_1 gain $\|G_{q_z,q_w}\|_{1+}$ is given by

$$\|G_{q_z,q_w}\|_{1+} = \min \gamma \text{ subject to } q_z^T G(0) \leq \gamma q_w$$

or equivalently,

$$\|G_{q_z,q_w}\|_{1+} = \max_i \left(\frac{q_z^T G(i)}{q_w} \right).$$

Corollary 2: For a given positive and stable system G, the L_1 gain $\|G_{q_z,q_w}\|_{1+}$ is finite for any fixed $q_z > 0$, $q_w > 0$.

Remark 1: If we let $q_z = 1_{n_z}$ and $q_w = 1_{n_w}$, the linear inequality condition (6) essentially reduces to the one shown in [10], [11]. It should be noted that, in the case where $q_z = 1_{n_z}$ and $q_w = 1_{n_w}$, the corresponding L_1 gain can be characterized concisely as $\|G(0)\|_1$ (this is also known as max-column-sum norm [1]). This fact can be readily seen from (12). In the case of general weightings $q_z > 0$ and $q_w > 0$, such concise representation seems hard to obtain.

IV. STABILITY ANALYSIS OF INTERCONNECTED POSITIVE SYSTEMS

In this section, we analyze stability of interconnected positive systems. It turns out that the L_1 gain with weightings introduced in the preceding section plays an important role for the stability analysis.

A. Interconnection of Two Positive Systems

Let us consider two positive systems G_1 and G_2 represented by

$$G_1: \begin{cases} \dot{x}_1 = A_1 x_1 + B_1 u_1, \\ y_1 = C_1 x_1 + D_1 u_1, \end{cases}$$

$$G_2: \begin{cases} \dot{x}_2 = A_2 x_2 + B_2 u_2, \\ y_2 = C_2 x_2 + D_2 u_2, \end{cases}$$

We consider the case where the inputs and the outputs have compatible dimensions so that the feedback-connection shown Fig. 1 with $u_1 = y_2$ and $u_2 = y_1$ is well-defined. For conciseness, we denote by $\oplus \sum_i G_i$ the interconnected system. In relation to the well-posedness of the feedback-connection, we make the next definition.

Definition 3: The interconnected system $\oplus \sum_i G_i$ is said to be admissible if the Metzler matrix $D_1 D_2 - I$ is Hurwitz stable.

In the sequel, we require the admissibility of the interconnected system $\oplus \sum_i G_i$ whenever we analyze its stability. The meaning of this presupposition, and its rationality as well, can be explained as follows. If $\det(D_1 D_2 - I) \neq 0$, then the interconnection in Fig. 1 is well-posed, and the state-space description of the interconnected system is represented by (14) given at the top of the next page. Thus, if the admissibility is ensured, we see that

(i) the interconnection in Fig. 1 is well-posed;
(ii) in addition to $D_1 D_2 - I$, the Metzler matrix $D_1 D_2 - I$ is Hurwitz well, and hence $(I - D_1 D_2)^{-1} \geq 0$ and $(I - D_2 D_1)^{-1} \geq 0$ hold. Therefore the matrix $A_{\xi I}$ in (14) is Metzler. It follows that the positive nature of G_1 and G_2, i.e., the positivity of the states x_1 and x_2, is still preserved under the interconnection.

Now, we are ready to state the main result of this paper.

Theorem 4: Let us consider the positive systems G_1 and G_2 described by (13). Then, the following conditions are equivalent:

(i) The interconnected system $\oplus \sum_i G_i$ is admissible and Hurwitz stable.
(ii) The Metzler matrices A_1 and A_2 are Hurwitz stable, and there exist $\bar{q}_1 > 0$ and $\bar{q}_2 > 0$ such that $\|G_{\bar{q}_1, \bar{q}_2}\|_{1+} < 1$.
(iii) There exist $q_1 > 0$ and $q_2 > 0$ such that $\|G_{q_1, q_2}\|_{1+} < 1$, $\|G_{q_2, q_1}\|_{1+} < 1$.
(iv) There exist $h_1 > 0$, $h_2 > 0$ and $q_1 > 0$, $q_2 > 0$ such that

$$\begin{bmatrix} h_1^T A_1 + q_1^T C_1 & h_1^T B_1 + q_1^T D_1 - q_2^T \\ h_2^T A_2 + q_2^T C_2 & h_2^T B_2 + q_2^T D_2 - q_1^T \end{bmatrix} < 0.$$

(v) The Metzler matrices A_1, A_2, and $G_1(0) G_2(0) - I$ (or equivalently, $G_2(0) G_1(0) - I$) are all Hurwitz stable.
(vi) The Metzler matrix

$$\Pi := \begin{bmatrix} A_1 & 0 & 0 & B_1 \\ 0 & A_2 & B_2 & 0 \\ C_1 & 0 & -I & D_1 \\ 0 & C_2 & D_2 & -I \end{bmatrix}$$

is Hurwitz stable.

In this theorem, the equivalence of (ii) and (iii) can be seen straightforwardly. Indeed, the implication (iii) \Rightarrow (ii) is obvious. On the other hand, if (ii) holds, then there exist $\gamma > 0$ such that

$$\|G_{\bar{q}_1, \bar{q}_2}\|_{1+} < \gamma, \quad \|G_{\bar{q}_2, \bar{q}_1}\|_{1+} < \frac{1}{\gamma}.$$ (15)

Here we used Corollary 2 implicitly. From (15), we see that the condition (ii) surely holds with, ex., $(q_1, q_2) = (\frac{1}{\gamma} \bar{q}_1, \bar{q}_2)$ or $(q_1, q_2) = (\bar{q}_1, \gamma \bar{q}_2)$. The equivalence of (iii) and (iv) is obvious from (ii) of Theorem 3. The equivalence of (iv) and (v) is a direct consequence of (iii) in Theorem 3. Finally, the equivalence of (iv) and (vi) also follows immediately from
\[
\begin{bmatrix}
 \dot{x}_1 \\
 \dot{x}_2
\end{bmatrix} = A_{cl} \begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}, \quad A_{cl} := \begin{bmatrix}
 A_1 + B_1(I - D_2 D_1)^{-1} D_2 C_1 & B_1(I - D_2 D_1)^{-1} C_2 \\
 B_2(I - D_1 D_2)^{-1} D_1 C_1 & A_2 + B_2(I - D_1 D_2)^{-1} D_1 C_2
\end{bmatrix}.
\]

(iv) of Theorem 2 if we note that the inequalities in (iv) can be restated equivalently as
\[
\begin{bmatrix}
 h_1 \\
 h_2 \\
 q_1 \\
 q_2
\end{bmatrix}^T \begin{bmatrix}
 A_1 & 0 & 0 & B_1 \\
 0 & A_2 & B_2 & 0 \\
 C_1 & 0 & -I & D_1 \\
 0 & C_2 & D_2 & -I
\end{bmatrix} < 0.
\]

Therefore, Theorem 4 is verified if we prove (i) ⇔ (vi).

Before moving onto the proof, it should be noted that Theorem 4 implies that the interconnected system \(\frac{1}{2} \sum_{i=1}^{2} G_i \) is stable only if \(G_1 \) and \(G_2 \) are both stable. This is consistent with the well-known fact that, under positivity-preserving interconnection, the system \(\frac{1}{2} \sum_{i=1}^{2} G_i \) is stable only if \(G_1 \) and \(G_2 \) are both stable [2], [8].

Proof of (i) ⇔ (vi) in Theorem 4: It is an elementary fact that the Metzler matrix \(\begin{bmatrix} -I & D_1 \\ D_2 & -I \end{bmatrix} \) is Hurwitz stable if and only if \(D_1 D_2 - I \) is. This is a sub-case of Lemma 1 with \(-I \) on the diagonal as well. Therefore the condition (i) can be restated equivalently as the Metzler matrices
\[
\begin{bmatrix}
 -I & D_1 \\
 D_2 & -I
\end{bmatrix}
\]

and
\[
A_{cl} := \begin{bmatrix}
 A_1 & 0 & 0 & B_1 \\
 0 & A_2 & B_2 & 0 \\
 C_1 & 0 & -I & D_1 \\
 0 & C_2 & D_2 & -I
\end{bmatrix}
\]

are both Hurwitz stable. Thus, the equivalence of (i) and (vi) follows directly from Lemma 1.

We have several remarks on Theorem 4. First of all, the condition (ii) can be interpreted as a sort of small gain condition that is quite popular in the community of control theory. In the literature, the gain is usually defined via the \(L_2 \) induced norm and plenty of results have been obtained for stability analysis of interconnected systems [9]. We have shown that, if we focus on the interconnection of positive systems, the small-gain-type condition can be obtained even if we replace the common \(L_2 \) gain by the \(L_1 \) gain with weightings. On the other hand, if we rewrite (ii) as in (ii) or (iv), we see that the positive vectors \((q_1, q_2) \) functionize as if they are separatizers, which again have played a crucial role in the stability analysis of interconnected systems [4], [5], [7]. We emphasize that the separator-based conditions (ii), (iii) and (iv) are necessary and sufficient, and this strong result is far from being easily achievable for general linear system analysis.

The conditions in Theorem 3 with separators \((q_1, q_2) \) are of course of little interest for stability analysis of exactly known systems. However, they are surely effective for robust stability analysis, particularly when the uncertain system of interest is composed of an exactly known positive stable system \(G \) and an uncertain system \(\Delta \) as shown in Fig. 2. As commonly done in the literature discussing separator-based conditions for general linear systems, there are basically two strategies for the use of (iv) in Theorem 4:

1. We fix the separators \(q_1 > 0 \) and \(q_2 > 0 \) by taking typical properties of the uncertain component \(\Delta \) into consideration. In this case, robust stability analysis amounts to examining only the \(L_1 \) gain condition for exactly known system, with fixed \(q_1 > 0 \) and \(q_2 > 0 \).

2. We jointly seek for the separators \(q_1 > 0, q_2 > 0 \) as well as for \(h_1 > 0, h_2 > 0 \). Even for those robust stability analysis problems where direct analysis on the closed-loop system is difficult, it is often the case that we can obtain numerically tractable conditions by the separator-based results in Theorem 4.

In the rest of this subsection, let us focus on the robust stability analysis along the first line stated above. To this end, we define the following two sets of uncertainties.

Definition 4: For given \(q_1 \in \mathbb{R}^m_+ \) and \(q_2 \in \mathbb{R}^m_+ \), we define \(\Delta_{dy,q_1} \) and \(\Delta_{st,q_1} \) by
\[
\Delta_{dy,q_1} := \{ \Delta(s) : \text{positive, stable, and LTI with} \}
\]
\[
\| \Delta_{dy,q_1} \|_{1+} \leq 1 \}
\]
\[
\Delta_{st,q_1} := \{ \Delta \in \mathbb{R}^{m \times 1}_+ : \| \Delta_{st,q_1} \|_{1+} \leq 1 \}
\]

By this definition, we characterized uncertainties in terms of their \(L_1 \) gain with weighting vectors \(q_1 \) and \(q_2 \). In the following, we analyze robust stability of the closed-loop system Fig. 2 against these uncertainties. We assume that the exactly known component \(G \) is a positive, stable and LTI system with coefficient matrices \(A \in \mathbb{R}_+^{n}, B \in \mathbb{R}_+^{n \times m}, C \in \mathbb{R}^{1 \times n}, D \in \mathbb{R}^{1 \times m} \). Under these preliminaries, we first show that the following strong theorem holds.

Theorem 5: For given \(q_1 \in \mathbb{R}^m_+ \) and \(q_2 \in \mathbb{R}^m_+ \), the closed-loop system in Fig. 2 is admissible and stable for all \(\Delta \in \Delta_{dy,q_1} \) and \(\Delta_{st,q_1} \) if and only if \(\|G_{q_1,q_2}\|_{1+} < 1 \) holds, or equivalently, there exists \(h > 0 \) such that
\[
\begin{bmatrix}
 h^T A + q_1^T C & h^T B + q_2^T D - q_2^T
\end{bmatrix} < 0.
\]

Proof of Theorem 5: Sufficiency is obvious from (ii) of Theorem 4. To prove the necessity by contradiction, suppose (16) does not hold. Then, from (10) in the proof of Theorem 3, we see that
\[
(q_1^T G(0))_{j^*} - q_{2,j^*} \geq 0
\]
holds for at least one index \(j^* \). If we define

![Fig. 2. Interconnection between exactly known G and uncertain Δ.](image-url)
$\Delta^* := \frac{1}{q_{2,j}} e_{ji} q_{ji}^T \in \mathbb{R}^{m \times l}$,

it is obvious that $\Delta^*_{q_{2,j}, q_{ji}} = 1$ and hence $\Delta^* \in \Delta^*_{q_{2,j}, q_{ji}}$. Furthermore, we obtain from (17) that

$$q_{i1}^T G(0) \Delta^* = (q_{i1}^T G(0)) q_{ji} \frac{1}{q_{2,j}} q_{ji}^T \geq q_{i1}^T.$$

This clearly shows that $G(0) \Delta^* - I$ is not Hurwitz stable. From (v) of Theorem 4, this implies that for the closed-loop system with $\Delta = \Delta^*$, at least one of the admissibility and stability requirements is violated.

It is important to note that, in the necessity part of the above proof, we have shown that the worst-case uncertainty that destabilizes the closed-loop system and/or violates the admissibility condition is always chosen as a nonnegative matrix $\Delta^* \in \mathbb{R}^{m \times l}$ (rather than a dynamical positive system). The next corollary readily follows from this fact.

Corollary 3: For given $q_{11} \in \mathbb{R}^{n_{1}+}_+ \Leftrightarrow (1+\mu_1)\mathbb{R}^{n_{1}+}_+$ and $q_{22} \in \mathbb{R}^{n_{2}+}_+$, the closed-loop system in Fig. 2 is admissible and stable for all $\Delta \in \Delta^*_{q_{11}, q_{11}}, q_{22} \in \mathbb{R}^{n_{2}+}_+$, if and only if $\left\|G(q_{11}, q_{22})\right\|_1 < 1$.

We note that the sufficiency of this corollary is obvious from Theorem 5. What is important is that the necessity still holds even if we restrict the class of the uncertainty from $\Delta \in \Delta^*_{q_{11}, q_{11}}$ to $\Delta \in \Delta^*_{q_{22}, q_{22}}$.

Remark 2: We note that robust stability of discrete-time positive systems is studied intensively in [3]. It was shown that, even if we presume uncertainties with dynamics, the worst-case uncertainty that destabilizes the closed-loop system is always chosen as a nonnegative matrix. This is surely consistent with Corollary 3. We emphasize that the result in Corollary 3 is still new since it ensures robust admissibility against uncertainties. The admissibility issue is missing in [3] because $D = 0$ is assumed there and therefore only affine dependence on the uncertainty was discussed.

B. Interconnection of N Positive Systems

We next consider the interconnection of $N (\geq 3)$ positive systems. Surprisingly enough, it turns out that a stability condition corresponding to (iii) (and hence (iv)) in Theorem 4 is still available. This is in sharp contrast with the case where we deal with general (non-positive) linear systems.

In order to deal with general interconnections among N subsystems while to facilitate our notations, let us assume that the i-th subsystem G_i is given by

$$G_i : \begin{cases} \dot{x}_i &= A_i x_i + \sum_{j=1}^{N} B_{ij} u_{ij}, \\ y_{ji} &= C_{ji} x_i \end{cases}$$

where $A_i \in \mathbb{M}_{n_i}, B_{ij} \in \mathbb{R}^{n_i \times n_{u_{ij}}}$, and $C_{ji} \in \mathbb{R}^{n_{y_{ji}} \times n_i}$. We consider the case where these N subsystems are interconnected by $u_{ij} = y_{ji} (i, j = 1, \cdots, N)$. This implies that $n_{u_{ij}} = n_{y_{ji}}$, hold for the dimension of the signals u_{ij} and $y_{ji} (i, j = 1, \cdots, N)$.

For example, in the case where $N = 3$, the state space realization of G_1 is given by

$$\dot{x}_1 = A_1 x_1 + \left[B_{11} B_{12} B_{13} \right] \begin{bmatrix} u_{11} \\ u_{12} \\ u_{13} \end{bmatrix},$$

and the overall interconnected system is represented by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{y}_{11} \\ \dot{y}_{21} \\ \dot{y}_{31} \end{bmatrix} = \begin{bmatrix} A_{11} & B_{12} & B_{13} \\ B_{21} & A_{22} & B_{23} \\ B_{31} & B_{32} & A_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ y_{21} \\ y_{31} \end{bmatrix} + \begin{bmatrix} u_{11} \\ u_{21} \\ u_{31} \end{bmatrix}.$$ \tag{19}

It should be noted that, in (18), we assume that each subsystem has its own minor feedback. This assumption has been made just for notational simplicity and hence in practice we can let $B_{ii} = 0$ and $C_{ii} = 0 (i = 1, \cdots, N)$. We also note that the admissibility issue does not appear here since we assume that the direct-feedthrough term of each subsystem is zero in (18).

If we denote by $\Xi \subseteq G_i$, the interconnected positive system of interest, we can prove that the next theorem holds.

Theorem 6: Let us consider the N positive systems G_i given in (18). Then, the following conditions are equivalent:

(i) The interconnected positive system ΞG_i is stable.

(ii) There exists $q_{ij} \in \mathbb{R}_{++}^{n_{u_{ij}}} (i, j = 1, \cdots, N)$ such that $\left\|G_i, q_{ij}, q_{ij}, q_{ij}, q_{ij}\right\|_1 < 1 \quad (i = 1, \cdots, N)$ where

$$q_{ij} = \begin{bmatrix} q_{i1} \\ \vdots \\ q_{iN} \end{bmatrix}$$

(iii) There exists $h_i \in \mathbb{R}_{++}^{n_{x_i}} (i = 1, \cdots, N)$ and $q_{ij} \in \mathbb{R}_{++}^{n_{u_{ij}}} (i, j = 1, \cdots, N)$ such that

$$h_i^T A_i + \sum_{j=1}^{N} q_{ij} C_{ji} < 0,$$

$$h_i^T B_{ij} - q_{ij} < 0 \quad (i, j = 1, \cdots, N).$$ \tag{20}

To see the conditions in this theorem more concretely, let us consider the case $N = 3$ for example. Then, the conditions in (ii) can be written as

$$\|G_1, q_{11}, q_{12}, q_{13}, q_{21}, q_{22}, q_{23}, q_{31}, q_{32}, q_{33}\|_1 < 1,$$

and

On the other hand, the conditions in (iii) become

$$h_1^T A_1 + \begin{bmatrix} q_{11} \\ q_{12} \\ q_{13} \end{bmatrix} < 0,$$

$$h_2^T A_2 + \begin{bmatrix} q_{21} \\ q_{22} \\ q_{23} \end{bmatrix} < 0,$$

$$h_3^T A_3 + \begin{bmatrix} q_{31} \\ q_{32} \\ q_{33} \end{bmatrix} < 0.$$ \tag{21}

As noted around (19), if $B_{ii} = 0$ and $C_{ii} = 0 (i = 1, 2, 3)$ as usual, the above condition can be simplified as
\[h_1^T A_1 + \begin{bmatrix} q_{21} \\ q_{31} \end{bmatrix}^T C_{21} C_{31} < 0, \quad h_1^T \begin{bmatrix} B_{12} & B_{13} \end{bmatrix} - \begin{bmatrix} q_{12} \\ q_{13} \end{bmatrix}^T < 0, \]
\[h_2^T A_2 + \begin{bmatrix} q_{12} \\ q_{13} \end{bmatrix}^T C_{12} C_{32} < 0, \quad h_2^T \begin{bmatrix} B_{21} & B_{23} \end{bmatrix} - \begin{bmatrix} q_{21} \\ q_{23} \end{bmatrix}^T < 0, \]
\[h_3^T A_3 + \begin{bmatrix} q_{13} \\ q_{23} \end{bmatrix}^T C_{13} C_{23} < 0, \quad h_3^T \begin{bmatrix} B_{31} & B_{32} \end{bmatrix} - \begin{bmatrix} q_{31} \\ q_{32} \end{bmatrix}^T < 0. \]

Proof of Theorem 6: The equivalence of (ii) and (iii) follows immediately from (ii) of Theorem 3. Therefore, we will prove (i) \(\Leftrightarrow \) (iii). To this end, let us first note that the state-space representation of the overall interconnected system can be written as
\[
\begin{bmatrix}
 \dot{x}_1 \\
 \vdots \\
 \dot{x}_N
\end{bmatrix} = A_{cl} \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_N
\end{bmatrix},
\]
where \(A_{cl} \) is a block matrix of the size \(n \times n \) with \(n := \sum_{i=1}^{N} n_i \). The (i, j)-block of the matrix of \(A_{cl} \) is given by
\[
\begin{cases}
 A_i + B_{ij} C_{ij} & (i = j) \\
 B_{ij} C_{ij} & (i \neq j)
\end{cases}
\]
Since \(A_{cl} \) is obviously Metzler, we see from Theorem 2 that the interconnected system \(\sum_{i=1}^{N} G_i \) is stable if and only if there exist \(h_i \in \mathbb{R}^{n_i} \) (i = 1, \ldots, N) such that
\[
h_i > 0 \quad (i = 1, \ldots, N), \quad h^T A_{cl} < 0, \quad h := [h_1^T \cdots h_N^T]^T.
\]
This condition can be restated equivalently as
\[
h_i > 0, \quad h_1^T A_1 + \sum_{j=1}^{N} h_j^T B_{j1} C_{ji} < 0 \quad (i = 1, \ldots, N).
\]
Therefore, the proof is completed if we establish the equivalence between the feasibility of (20) and (23).

Dynamic Uncertainty \(\Delta^d_\alpha \): \(\Delta^d_\alpha(s) := \begin{bmatrix} A(\alpha) & B(\alpha) \\ C(\alpha) & D(\alpha) \end{bmatrix}, \quad \sum_{i=1}^{L} \alpha_i A_i + \sum_{i=1}^{L} \alpha_i B_i \)

Static Uncertainty \(\Delta^s_\alpha \):
\[
\Delta^s_\alpha := \sum_{i=1}^{L} \alpha_i D_i.
\]

Similarly to Subsection IV-A, we analyze robust stability of the closed-loop system Fig. 2 against these uncertainties. As before, we assume that the exactly known component \(\tilde{G} \) is a positive, stable, and LTI system with coefficients \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{1 \times n}, D \in \mathbb{R}^{1 \times m} \). If we directly work on the closed-loop system of the form (14), we have to examine robust stability of a matrix that depends rationally on the uncertain parameter \(\alpha \). In this treatment, it is hard, or at least not easy, to obtain computationally tractable and efficient conditions for robust stability analysis. However, by means of the separator-based conditions in Theorem 4, we can easily obtain tractable linear inequality conditions for the robust stability analysis.

Theorem 7: The closed-loop system in Fig. 2 with \(\Delta = \Delta^d_\alpha \) is admissible and stable for all \(\alpha \in \mathbb{R}^{L} \) if there exist \(h_\alpha > 0 \) and \(q_\alpha > 0 \) such that
\[
q^{T} G(0) - q^{T} < 0.
\]
This clearly implies (20).

Similarly to the conditions in Theorem 4, the separator-based conditions in Theorem 6 will be effective when we deal with robustness issues. In addition to that, we have a prospect that the conditions in Theorem 6 can be used for LP-based control system synthesis for large-scale positive systems. This topic is currently under investigation.

V. ROBUST STABILITY ANALYSIS AGAINST PARAMETRIC UNCERTAINTIES

In Subsection IV-A, we consider the robust stability of uncertain system shown in Fig. 2 and derived Theorem 5 and Corollary 3. There, we assumed that the uncertainties are \(L_1 \) gain bounded with known weightings \(q_1 \) and \(q_2 \), and derived necessary and sufficient conditions for the stability against these types of uncertainties. In this section, we consider the case where the uncertainties are parametric. More precisely, we focus on the following two classes of uncertainties:

Dynamic Uncertainty \(\Delta^d_\alpha \):
\[
\Delta^d_\alpha(s) := \begin{bmatrix} A(\alpha) & B(\alpha) \\ C(\alpha) & D(\alpha) \end{bmatrix}, \quad \sum_{i=1}^{L} \alpha_i A_i + \sum_{i=1}^{L} \alpha_i B_i \]

Static Uncertainty \(\Delta^s_\alpha \):
\[
\Delta^s_\alpha := \sum_{i=1}^{L} \alpha_i D_i.
\]

Here, \(A_i \in \mathbb{R}^{l_i \times n}, B_i \in \mathbb{R}^{l_i \times m}, C_i \in \mathbb{R}^{n \times l_i}, D_i \in \mathbb{R}^{n \times l_i} \) are known matrices. Similarly, \(\Delta^s_\alpha \in \mathbb{R}^{n \times l_i} \) are known precisely. On the other hand, the parameter \(\alpha \in \mathbb{R}^{L} \) is uncertain, and assumed to satisfy \(\alpha \in \mathcal{A} \) where
\[
\mathcal{A} := \left\{ \alpha \in \mathbb{R}^{L} : \sum_{i=1}^{L} \alpha_i = 1 \right\}.
\]
as a robust stability condition where the variable is $q_R \in \mathbb{R}^L_{++}$. If $l < m$, then the latter condition might be better in terms of the computational load. However, it should be noted that the implication $(28) \Rightarrow (27)$ always holds. Namely, the condition (27) is always no more conservative than (28) and hence preferable in this sense. Indeed, if (28) holds, then there exists $\varepsilon > 0$ such that

$$q_R > 0, \quad q_R^T \left([G(0) + \varepsilon I_{1,m}]\Delta_{[i]} - I\right) < 0 \quad (i = 1, \ldots, L).$$

This implies

$$q > 0, \quad q^T \left(\Delta_{[i]}[G(0) + \varepsilon I_{1,m}] - I\right) < 0 \quad (i = 1, \ldots, L)$$

holds where $q := (q_R^T [G(0) + \varepsilon I_{1,m}])^T > 0$. It follows that (27) holds.

In general, the linear inequality condition (27) is conservative and far from necessary. However, if the input of G is scalar, then the term $\Delta_{[i]}[G(0)]$ in (27) is a scalar as well, and from simple convexity arguments, we see that the closed-loop system in Fig. 2 with $\Delta = \Delta^*_{[i]}$ is admissible and stable for all $\alpha \in \alpha$ if and only if (27) holds. Exactly the same result follows for (28) in the case where the output of G is scalar. In these cases, it is also true that the separators q and q_R are no longer necessary since they are scalar. These results are summarized in the following corollary.

Corollary 4: In the closed-loop system in Fig. 2, suppose one of the input or output of G is scalar. Then, the closed-loop system with $\Delta = \Delta^*_{[i]}$ is admissible and stable for all $\alpha \in \alpha$ if and only if the closed-loop system with $\Delta = \Delta_{[i]}$ is admissible and stable for all $i = 1, \ldots, L$.

VI. NUMERICAL EXAMPLE

In this section, we illustrate the effectiveness of the result in this paper via a simple academic example. Let us consider the interconnection shown Fig. 2. The nominal system G is a positive and stable system with coefficient matrices

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} -3.5 & 0.2 \ 0.5 & -3.3 \ 0.9 & 0.7 \\ 0.7 & 0.2 \ 0.3 & 0.1 \end{bmatrix}.$$

We assume that the uncertainty component Δ is given in the form of (24) where $L = 2$ and

$$\begin{bmatrix} A_{[i]} & B_{[i]} \\ C_{[i]} & D_{[i]} \end{bmatrix} = \begin{bmatrix} -2.5 & 0.1 \ 0.6 & -2.8 \ 0.5 & 0.1 \ 0.5 & 0.1 \ 0.2 & 0.1 \ 0.2 & 0.1 \end{bmatrix},$$

$$\begin{bmatrix} A_{[2]} & B_{[2]} \\ C_{[2]} & D_{[2]} \end{bmatrix} = \begin{bmatrix} -2.7 & 0.6 \ 0.5 & -2.7 \ 0 & 0.2 \ 0.1 & 0.4 \end{bmatrix}.$$

For robust admissibility and stability analysis of the interconnected system, we examined the feasibility of (26). Then, it turns out to be feasible with

$$h = \begin{bmatrix} 1.07 \\ 1.00 \end{bmatrix}, \quad h_R = \begin{bmatrix} 1.12 \\ 1.00 \ 2.15 \ 1.18 \ 2.95 \ 1.88 \end{bmatrix}, \quad q = \begin{bmatrix} 1.18 \\ 2.15 \ 1.18 \end{bmatrix}, \quad q_R = \begin{bmatrix} 2.95 \ 1.88 \end{bmatrix}.$$

Therefore, we can conclude that the interconnected system is robustly admissible and stable.

In this numerical example, the standard L_1 gain for each system is computed as

$$\|G_{1,1}\|_1 = 1.43, \quad \|G_{1,2}\|_1 = 0.76, \quad \|G_{2,1}\|_1 = 1.67.$$

Since $\|G_{1,2}\|_1 > 0$, we cannot draw any affirmative conclusions from the outset if we employ the standard L_1 gain. However, by jointly searching for the weightings q and q_R, we indeed succeeded in ensuring robust admissibility and stability. For comparison, the L_1 gain with computed q and q_R are given as follows:

$$\|G_{q,q_R}\|_1 = 0.92, \quad \|G_{q,q_R}\|_1 = 0.73, \quad \|G_{q,q_R}\|_1 = 0.57.$$

VII. CONCLUSION

In this paper, we investigated L_1 gain analysis of positive systems and applied it to stability of interconnected systems. In particular, we have shown that the stability of interconnected systems can be characterized by L_1 gain of subsystems with appropriately selected weightings. These weightings functionate as separators, and we clarified that those separator-based conditions are surely effective particularly when we deal with robust stability analysis against L_1 gain bounded and parametric uncertainties.

The L_1 gain condition and separator-based stability conditions in this paper are given in terms of linear inequalities. We have a strong prospect that these conditions lead us to LP-based L_1 controller synthesis even under the presence of uncertainties. This topic is currently under investigation.

REFERENCES

