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Discrete (or combinatorial) optimization

Discrete (or combinatorial) optimization

Find the minimum (of the maximum) of a function f defined on a
discrete set X .

min f (x), x ∈ X
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Typical discrete optimization problems (1/8)

Traveling salesman problem

A traveling salesman must cover n cities starting from city 1 and returning
to the starting city. cij is the travel cost from city i to city j . What is the
minimum cost tour ?
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Typical discrete optimization problems (2/8)

Knapsack problem

A company has a total budget B for funding a subset of n projets. Each
project i has a cost ci and a profit vi . Which projects should the company
select to maximize its total income ?
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Typical discrete optimization problems (3/8)

Set covering problem

Communications on m regions are covered by antennas to be installed on
n predefined sites. Each site i has an installation cost ci and may cover a
set of regions Si . Which antennas should be installed to cover the set of
regions at minimal cost ?
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Typical discrete optimization problems (4/8)

Warehouse location problem

A company delivers goods to m customer and may use to that prupose n
possible warehouses. Opening warehouse j yields a fixed cost fj and
transportation of an order to customer i from warehouse j has a cost cij .
Which warehouses should be opened and what is the optimal delivery plan
to minimize total cost ?
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Typical discrete optimization problems (5/8)

One-machine scheduling problem

An assembly line must assemble n products. Each product i has an
assembly duration pi , the components to be assembled arrive at the
assembly line at a known date ri and a due date di is negociated with the
customer for each product. Under the constraint that the assembly line
may assemble a single product at a given time, what are the start times of
the assembly operations that minimize the maximum lateness ?
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Typical discrete optimization problems (6/8)

Assignment problem

n jobs have to be performed by n employees. As some employees are more
experienced than others on doing certain jobs, cij denotes the time needed
by employee i to perform job j . What is the job/employee assignment that
minimizes the total work duration ?
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Typical discrete optimization problems (7/8)

Shortest path problem

A road network is represented by a directed graph G = (V ,A). Direct
transportation of a location i to a location j is possible if (i , j) ∈ A and
has a duration cij . Given two locations s and t, what is the minimum cost
path from s to t ?
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Typical discrete optimization problems (8/8)

Minimum cost flow problem

A transportation network is represented by a directed graph G = (V ,A).
Each node i ∈ V has a value bi , corresponding to a production amount
(bi > 0), a demand (bi < 0) or a transit (bi = 0) of goods. Each arc
(i , j) ∈ A represents a transportation resource with a limited capacity hij

and a unit cost cij . What is the transportation plan satisfying all demands
at minimal cost ?
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Easy and hard optimization problems

1 Polynomial problems

Assignment problem
Shortest path problem
Minimum cost flow problem

2 Weakly NP-hard

Knapsack problem

3 Strongly NP-hard

Traveling salesman problem
Set coverning problem
Warehouse location problem
One-machine scheduling problem

Heuristics may be needed for the last two categories (and even for the first
one !!)
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Heuristics: definition

Definition (from Wikipedia)

Heuristic refers to experience-based techniques for problem solving,
learning, and discovery. Heuristic methods are used to speed up the
process of finding a good enough solution, where an exhaustive search is
impractical. Examples of this method include using a ”rule of thumb”, an
educated guess, an intuitive judgment, or common sense. In more precise
terms, heuristics are strategies using readily accessible, though loosely
applicable, information to control problem solving in human beings and
machines.

In this lecture

A heuristic is an algorithm for solving (a specific or general) discrete
optimization problem which aims at finding a good solution rather
than the optimal solution.

It may or not have a performance guarantee.
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Heuristics: classification

Greedy algorithms

Used to build a solution from scratch
Decision process is decomposed into steps
At each step take a (the best) decision

Local search algorithms

Start from a complete solution S and improve it by searching in its
neighborhood.
Define the neighborhood of a solution N (S)
Hill-climbing : at each step take the best solution S ′ in the
neighborhood N (S). if S ′ improves S then set S = S ′ and reiterate.
Otherwise STOP.

Metaheuristics

General-purpose algorithmic schemes to escape from local optima
Single solution vs population-based metaheuristics

Deterministic vs randomized algorithms
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Performance guarantee

Discrete optimization problem P

Heuristic H for P

Instance I of P

fH(I ) Objective obtained on I by H

OPT (I ) Optimum of I

Performance ratio of H on I

ρH(I ) =
fH(I )

OPT (I )

Note ρH(I ) ≤ 1 for maximization problems while ρH(I ) ≥ 1 for
minimization problems.

Performance guarantee ρH of H on P

∀I ∈ P, ρH(I ) ≤ ρH for min. problem

∀I ∈ P, ρH(I ) ≥ ρH for max. problem
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Performance guarantee: how can we obtain it in practice

NP-hard to compute OPT(I)

Suppose we have a polynomial time algorithm to compute a lower
bound LB(I )

If we show that

∀I ∈ P, fH(I ) ≤ ρ′HLB(I ) withρ′H ≥ 1 for min. problem

ρ′H is a performance guarantee since LB(I ) ≤ OPT (I )
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Vertex cover example

Cardinality vertex cover problem

Consider a graph G = (V ,E ). A vertex cover is a set of vertices V ′ ⊆ V
such that every edge has an endpoint in V ′. Find a vertex cover of
minimum cardinality.

Vertex covers

Minimum vertex covers
c©2009 Miym under CC BY-SA 3.0

Christian Artigues (LAAS-CNRS) Performance guarantee heuristics June 16, 2011 17 / 41



A Lower bound for minimum vertex cover

Matching of a graph G = (V ,E ): a subset of the edges such that no
two edges share an endpoint

Maximal matching: a matching that is maximal in the inclusion sense

Algorithm for finding a Maximal matching: select an edge and
removes its endpoints from V . Reiterate until there are no more
edges. Output the set of selected edges.

Theorem

The cardinality of any maximal matching is a lower bound for the
minimum vertex cover

Proof.

Any vertex cover has to pick at least one endpoint of a matched edge and
no two matched edges have a common endpoint.

Christian Artigues (LAAS-CNRS) Performance guarantee heuristics June 16, 2011 18 / 41



An approximation algorithm for minimum vertex cover

Algorithm 1 (vertex cover). Find a maximal matching and output the
set of matched vertices.

Theorem

Algorithm 1 is a factor 2 approximation algorithm for the cardinality vertex
cover problem

Proof.

The set of matched vertices is a vertex cover since if an edge is not
covered, it could have been added to the matching, which contradicts
its maximality.

We know the cardinality of the maximal matching is a lower bound,
so it is lower than OPT, the size of the minimum vertex cover.
Trivially, the size M of the matched vertices is twice the size of the
matched edges, so M ≥ 2OPT .
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An approximation algorithm for minimum vertex cover

A cardinality 2 maximal matching yielding a cardinality 4 vertex cover.
Remark factor can also be reached on some instances !
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TSP with triangle inequality example

Traveling salesman problem with triangle inequality

A traveling salesman must cover n cities starting from city 1 and returning
to the starting city. cij is the travel cost from city i to city j . For any cities
i , j , k we have cik ≤ cij + cjk . What is the minimum cost tour ?

Example Taken from Introduction to Algorithms by Cormen, Leiserson, andRivest
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Minimum spanning tree

Minimum spanning tree problem

consider a connected graph graph G = (V ,E ). Each edge (i , j) ∈ E has a
cost cij . Find a spanning tree (e.g. a tree which covers all verties) of
minimal cost

Polynomial problem solved by Prim’s or Kruskal’s algorithms.
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A lower bound for the TSP

Theorem

The solution of the minimum spanning tree starting from any node is a
lower bound for the TSP

Proof.

Consider the optimal tour and remove one edge. We obtain a chain which
is a spanning tree for any root node. Its length is lower than the optimal
tour as one edge was removed and larger than the minimum spanning tree
from any root node.
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An approximation algorithm for the TSP with triangle
inequality

Algorithm 2.

1 Compute the minimum spanning tree from the depot.

2 Duplicate each edge of the tree and consider the Eulerian cycle

3 Build an Hamiltonian cycle. Traverse the Eulerian cycle but each time
an already visited vertice is about to be visited, jump to the next
unvisited vertex.

Theorem

Algorithm 2 is a factor 2 approximation algorithm for the traveling
salesman problem

Christian Artigues (LAAS-CNRS) Performance guarantee heuristics June 16, 2011 24 / 41



An approximation algorithm for the TSP with triangle
inequality

Proof.

The Eulerian cycle built at step 2 has a length equal to twice the
length of the minimum spanning tree

At step 3, each time we jump from i to an unvisited node j along the
eulerian cycle, we replace cost cii1 + cii2 + . . .+ cip j by cost cij where
i1, . . . , ip are already visited vertices. Since triangle inequality holds,
the cost cannot be increased this way.

The cost of the obtained Hamiltonian tour has a length lower than
twice the length of the minimum spanning tree which is also lower
than the optimal tour length.
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An approximation algorithm for the TSP with triangle
inequality

Example Taken from Introduction to Algorithms by Cormen, Leiserson, andRivest
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Knapsack problem example

Knapsack problem (KP)

A company has a total budget B for funding a subset of n projets. Each
project i has a cost ci and a profit vi . Which projects should the company
select to maximize its total income ?

Greedy Algorithm: Sort the items according to decreasing ratio vi
ci

and
pick greedily the items in that order.

Performance arbitrarily bad. Consider a n = 2 example with an item
with profit 2 and cost 1 and an item with profit B and size B. Greedy
algorithm takes only the first item. Performance ratio B

2 !
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A better greedy algorithm for the Knapsack problem

Improved Greedy Algorithm: Sort items in decreasing vi
ci

and take
items in this order until reaching item s which exceeds capacity
(B −

∑s−1
i=1 ci < cs). Solution s1 selects items 1, ..., s − 1. Consider

also the solution s2 picking only the largest item s. Take the best of
s1 and s2

Theorem

Improved Greedy Algorithm is a factor 2 approximation algorithm for the
knapsack problem

Proof on following slides.
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An upper bound for the Knapsack problem

LP relaxation

LKP = max
n∑

i=1

vixi

s.c.
n∑

i=1

cixi ≤ B

0 ≤ xi ≤ 1, i = 1, . . . , n

LKP is an upper bound for the knapsack problem

Lemma

LKP is equal to the solution obtain by the following greedy algorithm.
Sort items in decreasing vi

ci
and take items (xi = 1) in this order until item

s which exceeds capacity (B −
∑s−1

i=1 ci < cs). Then take a fractional part
of item s by setting xs = cs

B−
∑s−1

i=1 ci
.
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An upper bound for the Knapsack problem (contd)

Proof.

Assume all items have different ratios vi
ci

(we can merge items having
the same ratio)

Suppose optimal solution x∗ of the relaxed KP is different from
x1 = . . . = xs−1 = 1, xs = cs

B−
∑s−1

i=1 ci
and xs+1 = . . . = xn = 0.

We must have x∗j > 0 for at least one j > s and x∗i < 1 for at least
one i < s.

set c = min
(

cjx
∗
j , ci (1− x∗i )

)
.

Consider solution x ′ identical to c∗ except that x ′j = x∗j −
d
wj

and

x ′i = x∗i + d
wi

.

x ′ is feasible since its weight is equal to
∑n

k=1 ckx∗k + wid
wi
− wjd

wj
= B

and its profit is equal to
∑n

k=1 vkx∗k + d( vici −
vj
cj

) >
∑n

k=1 vkx∗k , which

contradicts optimality of x∗.
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An approximation algorithm for the Knapsack problem
(contd)

Assume items are numbered according to decreasing vi/ci

Let OPT denote the optimal solution of KP.

LKP =
∑n

i=1 vi + cs
B−

∑s−1
i=1 ci

vs ≥ OPT ≥
∑n

i=1 vi

Hence we have also
∑n

i=1 vi + vs ≥ OPT

For this, we must have max(
∑n

i=1 vi , vs) ≥ 1
2OPT

This is the value of the improved greedy algorithm. Hence the
improved greedy algorithm is a factor 2 approximation algorithm.
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Polynomial Time Approximation Scheme (PTAS)

Algorithms seen so far have a constant approximation factor.

Can we design algorithms that can get arbitrarily close to the
optimum ?

Yes ! These algorithms are called PTAS.

PTAS for minimization problem P

A family of approximation algorithms Aε : ε > 0 for P.

Aε is a factor (1 + ε) - approximation algorithm for P.

Aε runs in time polynomial in input size for a fixed ε
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A PTAS for the knapsack problem

Consider the following algorithm (AKP)

Consider an integer constant k ≥ 1

Enumerate all subsets of k or less objects among n (O(knk))

for each subset, fill up the knapsack by the remaining items in
descending order of the ratio vi

ci
.

Theorem

The above algorithm is a factor (1 + 1/k) approximation algorithm for KP.

OPT

v(AKP)
≤ (1 + 1/k)

Proof in next slide.
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A PTAS for the knapsack problem (Proof)

Proof that OPT
v(AKP)

≤ (1 + 1/k)

Let O be the optimal set of selected items. We suppose |O| > k .

Let H ⊂ O = {a1, . . . , ak} be the subset of k most profitable items in
terms of ratio vi

ci
(one of the enumerated subsets).

Let G be the items selected by the greedy part.

Let L = O \ H = {ak+1, . . . , ah} the “optimal” subset that was not
selected by the enumerative part.

Let m the first index in L that was not selected by the greedy part
(because its size exceeded the remaining capacity).

Knapsack contains H, ak+1, . . . , am−1 and other items not in O.

Let Be denote the remaining empty capacity. Size of G \ O is
∆ = B − Be −

∑m−1
i=1 cai .

Since the items of G \O have a ratio not smaller than vam/cam , profit
of G is bounded by v(G ) ≥

∑m−1
i=k+1 vai + ∆vam/cam .
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A PTAS for the knapsack problem (Proof contd)

Proof that OPT
v(A−KP)

≤ (1 + 1/k)

Optimal profit is

OPT = v(O) =
k∑

i=1

vai + summ−1
i=k+1vai + sum

|O|
i=mvai

≤ v(H) + (v(G )−∆vam/cam) + (B −
m−1∑
i=1

cai )vam/cam

= v(H) + v(G ) + Bevam/cam < v(H ∪ G ) + vam

We also know that v(AKP) ≥ v(H ∪ G ) as H is part of the
enumerated subsets and G is the set of items selected by the greedy
part if H is selected. This yields OPT − v(AKP) < vam .

Furthermore we have v(am) ≤ v(O)/(k + 1) (since all items in G
have a ratio of at least vam/cam). This yields the approximation ratio.
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Limits of PTAS

With algorithm AKP, we have a 1− ε approximation where
1/ε = k + 1.

The running time is O(1/ε1/ε) which is polynomial in n but
exponential in 1/ε and drammatically increases as k increases !

Could we find a family of algorithms Aε which are both polynomial
in input data and ε ?

Fully polynomial time approximation algorithm (FPTAS) for
minimization problem P

A family of approximation algorithms Aε : ε > 0 for a problem P.

Aε is a factor (1 + ε) - approximation algorithm for P.

Aε runs in time polynomial in input size and 1/ε
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Pseudo polynomial algorithm for the knapsack problem

There exists a pseudo-polynomial (dynamic programming or DP)
algorithm (running in O(n2V )) to solve the knapsack problem, where
V is the maximum profit V = maxi=1,...,n vi .

Let Si ,v denote a subset of {a1, . . . , ap} that has a profit of exactly
v , taking the least amount of capacity possible.

Let Ci ,p the size of Si ,v with Ci ,v =∞ if there is no such subset

We have the simple case C (1, v) = ca1 for v = va1 and A(1, v) =∞
otherwise.

The following recurrence allows to compute all C (i , v):

C (i + 1, v) =

{
min(C (i , v), cai+1 + C (i , v − vai+1))) if vai+1 ≤ v
C (i , v) otherwise

The optimal subset corresponds to the set Sn,v that maximizes v and
such that Cn,v ≤ B.
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FPTAS for the knapsack problem

Idea : scaling the profit down so as to obtain a polynomial algorithm.
Consider the following algorithm (AKP2)

Given ε > 0, set K = εV
n

For each object ai define v ′ai = b vaiK c
use DP to find optimal subset S ′ for profits v ′ and objects a1, . . . , an

Theorem

AKP2 is a fullly polynomial approximation scheme for KP as S ′ verifies
v(S ′) ≥ (1− ε)OPT

Proof in next slide
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FPTAS for the knapsack problem (Proof)

Proof.

Algorithm has an O(n2bVK c) = O(n2bnε c) time complexity which is
polynomial in n and 1/ε

Let O denote the optimal set. Each profit verifies va ≥ Kv ′a so in the
scaled problem, profit v ′(O) verifies v(O)− Kv ′(O) ≤ nK

Solving the scaled instance we obain a set S ′ such that
v ′(S ′) ≥ v ′(′O) and so v(S ′) ≥ Kv ′(O) ≥ v(O)− nK = OPT − εv .
It yields v(S ′) ≥ (1− ε)OPT
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Inapproximability

Proof.

Complexity issues : strongly NP-hard problem cannot have a FPTAS

Other problems cannot have a PTAS

Some other problems cannot even have a constant factor
appproximation unless P = NP

Efficiency of approximation algorithms in practive ?
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Sources

Handbook of Scheduling, Algorithms Models and Performance
Analysis, J.Y.T. Leung, Chapmann&Hall/CRC, 2004

Approximation Algorithms, V.V. Vazirani, Springer, 2003

The Knapsack Problem and Fully Polynomial Time Approximation
Schemes (FPTAS), Katherine Lai, 18.434: Seminar in Theoretical
Computer Science, Prof. M. X. Goemans,
math.mit.edu/~goemans/18434S06/knapsack-katherine.pdf

Anupam Gupta and R. Ravi, 15-854: Approximation Algorithms,
http:

//www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/
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