
504 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 4, APRIL 1990

Softwarefailed

Dependability Modeling and Evaluation of Software

C

Fault-Tolerant Systems

Abstmct-The paper provides dependability modeling and
evaluation (encompassing reliability and safety issues) of the
two major fault tolerance software approaches: recovery Mocks
(RB) and N-version programming (NVP) . The study is based
on the detailed analysis of software fault-tolerance architectures
able to tolerate a single fault (RB: two alternates and an accep-
tance test, NVP: three versions and a decider).

Index Terms-Dependability evaluation, dependability mod-
eling, software design diversity, software fault tolerance.

I. INTRODUCTION

NUMBER of papers devoted to the dependability analysis A of software fault tolerance approaches have appeared in
the literature, for which two major goals can be identified:
1) modeling and evaluation of the dependability measures [7],
[IO], [141, [151, [181, 1241, [28], [29], 2) detailed analysis of
the dependencies in diversified software [6], [I l l , [22], [27].

This paper is an elaboration on the work presented in [2]
and belongs to the first class and analyzes the two most doc-
umented approaches to software fault tolerance: RB [26] and
NVP [8]. The major extensions to published work concern: 1)
the definition of a unified modeling framework based on the
identification of the possible types of faults through the anal-
ysis of the software production process [181, 2) the evaluation
of both reliability and safety measures, and 3) the consider-
ation of two specific characteristics of the architectures that
have received little treatment up to now: the discarding of a
failed version, for NVP, and the nesting of the blocks, for
RB .

Two classes of faults are considered: independent faults
and related faults [3]. Related faults result either from a fault
in the common specification, or from dependencies in the sep-
arate designs and implementations. Two types of related faults
may be distinguished: 1) among several variants (alternates for
RB or versions for NVP) and 2) among one or several variants
and the decider (the acceptance test of the RB or the voting
algorithm of NVP). Related faults manifest under the form
of similar errors, whereas we shall assume that independent
faults cause distinct errors.

Since the faults considered are design faults that are intro-
duced in the software, either during its specification or during

Manuscript received July 23, 1989; revised November 20, 1989. This work
was carried out in the framework of the Hermes European Space Shuttle
Project and of the ESPRIT Project “Predictably Dependable Computing Sys-
tems.”

The authors are with the Laboratoire d’Automatique et d’Analyse des
Systtmes du Centre National de la Recherche Scientifique (LAAS-CNRS),
Toulouse, France.

IEEE Log Number 8933892.

r-Ty Idisoftwae I I I ,
End of

Execution Restoration
of sewice Software under Execution

L I I I I

Fig. 1. General behavior model.

its implementation, we shall start the analysis of each approach
by relating the various types of faults to the production process
U81.

When a failure occurs, the detection of the inability to de-
liver acceptable results may be an important consideration, in
the sense that an undetected failure may have, and generally
has, catastrophic consequences. Although the notion of safety
strongly depends on the considered application, in practice,
the detection of the inability to deliver proper service is a pre-
requisite to initiate the specific safety procedures. A detected
failure (no acceptable result is identified by the decider and
no output result is delivered) will thus be termed as a benign
failure, whereas an undetected failure (an erroneous result is
delivered) will be termed as a catastrophic failure.

As usual, we shall consider reliability as a measure of the
time to failure and safety as a measure of the time to catas-
trophic failure.

Software faults can manifest only when it is executed. We
shall thus consider the execution process and the fault mani-
festation process.

The general behavior model is given in Fig. 1. Transition
from B to I stands only for safety, in which case it is assumed
that it is possible to restore service delivery by means of pro-
cedures carried out at an upper level, i.e., supplying input
data different from those having led to benign failure. State
class C is absorbing for safety whereas both state classes B
and C are absorbing for reliability.

We shall assume that the behavior of the systems under con-
sideration can be modeled as a Markov chain; for a discussion
of this assumption, see, e.g., [9], [18], [21]. The execution
process will be modeled through execution rates and the fault
manifestation process will be modeled through probabilities
conditioned on the execution of the various components of
the software: the variants and the decider. The transition rates
outputting from the nonabsorbing states are of the form

A.. r j - - Pij . X i with C p i j = 1
i

OO18-9340/90/0400-0504$01 .OO 0 1990 IEEE

ARLAT et al.: DEPENDABILITY MODELING AND EVALUATION OF SOFTWARE FAULT-TOLERANT SYSTEMS 505

where i designates a nonabsorbing state, A, is the rate asso-
ciated to the tasks executed in state i, and pij represents the
probability of the transition from state i to statej of the model.

When the nonabsorbing states (nonfailed states for reliabil-
ity, nonfailed and benign failure states for safety) constitute an
irreducible set [12] (i.e., the graph associated with the non-
absorbing states is strongly connected), it is shown in [25]
that the absorption process is asymptotically a homogeneous
Poisson process (HPP), whose failure rate r is given by

tance test (AT). During the diversified designs and implemen-
tations of P, S , and AT, independent faults may be created.
However, due to dependencies, some related faults between
P and S or between P, S , and the AT may be introduced.
Faults committed during common specification (path 1 -+ 2,
1 + 3, 1 + 2 + 3) are likely to be related faults and, as such,
the cause of similar errors. Faults created during the imple-
mentation can also lead to related faults between P, S , and
AT (channels a , 6 , c) ; all these faults are summarized in Fig.

n(transition rates of the considered path) r =
paths from n { (output rates of the considered state)

initial state (1) to states in path
absorbing states (1 excepted)

The rate of convergence of the absorption process towards
the asymptotic HPP is directly related to the execution rates;
it is thus reached very rapidly (say, after three executions).
We shall adopt this approach in the following whenever pos-
sible, and we shall denote as equivalent rate, the rate of the
asymptotic HPP. r, will denote the equivalent failure rate
for reliability and I?, is the equivalent catastrophic failure
rate for safety.

Using relations 1) and 2), it can be easily verified that the
equivalent failure rates can be expressed simply using: 1) the
departure rate U from state Z of Fig. 1 and 2) the probability
of failure of the software obtained from the embedded discrete
chain. Let QR (resp., Qs) be the probability of failure (resp.,
catastrophic failure), thus,

rR = UQR, rs = U ~ s . (3)

Accordingly, reliability (R(t)) and safety (S (t)) are given by

R(t) = exp(-rRt) S (t) = exp(-Tst). (4)

As QR and Qs are evaluated directly from the discrete
Markov chain, in the sequel we focus essentially in the pre-
sentation of the discrete Markov chains describing the fault
manifestation process of the fault-tolerant softwares.

Finally, it is worth noting that we focus on the fault-tolerant
software itself, i.e., the underlying mechanisms are not con-
sidered: 1) recovery point establishment and restoration for
RB, and 2) synchronization of the versions, cross-check points
establishment for NVP.

The sequel of the paper is organized into four sections.
Sections I1 and I11 present, respectively, the analyses of RB
and NVP: for each approach a detailed model based on the
production process of the fault-tolerant software is first estab-
lished and then it is simplified through the assumptions that
only a single fault type may manifest during execution of the
fault-tolerant software and that no error compensation may
take place within the software. Section IV introduces some
elements for RB and NVP comparison. Section V analyzes
the nested RB’s.

11. RECOVERY BLOCKS

Fig. 2(a) shows the production process of an RB with two
alternates [a primary (P) and a secondary (91, and one accep-

2(b). It is worth noting that the probabilities listed could be
obtained from controlled experiments such as the one reported
in [l].

For deriving the fault manifestation model, a question im-
mediately arises: what types of faults are considered as pos-
sibly manifesting as the consequence of their activation? This
leads to consider successively the following assumptions:

Al) only a single fault type (either independent or related)
may manifest during the execution of an alternate and the AT
and no error compensation may take place within an alter-
nate and the AT during an execution, i.e., an error is either
detected and processed or leads to catastrophic failure.

A2) only a single fault type may manifest during the exe-
cution of the whole RB and no error compensation may take
place within the RB.

The detailed model will be based on assumption A 1, which
enables some singular behaviors of the decider to be charac-
terized.

Assumption A2 will serve as a basis for the simplified
model.

A . Detailed RB Model
Fig. 3 describes the M1 model based on the notation of Fig.

2(b). P, T P , S , and TS form the Software under Execution
class from Fig. 1, respectively: execution of P, execution of
AT after P, execution of S , execution of AT after S .

Different states are considered for TP to account for the
various types of faults that may be activated in P:

TP1) no fault activated [p p] ,

TP2) activation of an independent fault [qp],
TP3) activation of a related fault between P and S [qps] ,
TP4) activation of a related fault between P and the AT

The partition leads to a subsequent decomposition of states
S and TS. It is assumed that no fault can be activated in AT
after activation of an independent fault in P (unity transition
from state TP2): these faults are considered as consisting es-
sentially of related faults and, as such, are accounted for in
probability qpT leading to state TP4. Activation of a related
fault between P and S (state TP3) corresponds to a detected
failure and leads through S3 and TS3 to state B. The activation
of a related fault between P and AT (state TP4) corresponds
to a catastrophic failure and leads to state C.

[q P T] .

506

/PT
P P

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 4, APRIL 1990

SPEClFlCATlON
OF THE BLOCK

* Since the activation of a related fault between P and AT leads to RB failure, no
further decomposition with respect to the faults of S is necessary.

(b)

and notation.
Fig. 2. RB analysis. (a) Fault sources in production process. (b) Fault types

Due to the fact that S is executed only when an indepen-
dent fault has been activated either in P or in AT, conditional
probabilities have been introduced in the model; in particular

qs = Prob {activation of an independent fault in SJS is
executed after activation of a fault in P }

qi = Prob {activation of an independent fault in SJS is
executed after activation of a fault in AT}.

The same differences in the conditions apply for qsT and
qiT and also for the probabilities of activation of an inde-
pendent fault in the AT following the execution of S: 41- and

The path T = {P , TP1, S 1, TS 1, I} corresponds to an er-
ror compensation identifying a singular behavior of the AT:
the AT rejects an acceptable result provided by P and subse-
quently accepts the result given by S .

It is worth noting that MI can be reduced when considering

4;.

P T

Fig. 4. Model M'l.

that

- q T % q& , qs NN q i , q S T "N qiT: the probabilities of acti-
vation of a fault in S (or AT) following the activation of
an independent fault either in P or in AT are equivalent,
since in any case their execution is a consequence of the
application of error-prone input data,

- p;! << 1: error compensation (path a) is unlikely to oc-
cur,

- each state belonging to the Software under Execution
class with an outgoing transition equal to 1 can be
merged with the next state,

M1 can thus be reduced to model M'1 of Fig. 4.

B . Simplified RB Model
In this case, since assumption A2 applies, a single fault type

can be activated in the whole RB; thus, transitions from S1
and S2 to TS4 of model M1 (resp., SI to C for M'l) must
be deleted. This is equivalent to make qsr = 0 and to merge
the related faults between S and AT with the related faults
between P and AT; it follows that q p T becomes qpsr. The
corresponding model (M2) is given in Fig. 5.

C . Processing of the Models

for models M1 and M' 1 :
Assuming that p p % 1 - qp and p s FZ 1 - qs , we obtain

for reliability: r, = U {qps + qpT + qT

ARLAT et al. : DEPENDABILITY MODELING AND EVALUATION OF SOFTWARE FAULT-TOLERANT SYSTEMS 507

Paths where faulMs)
is(are) created or

dependency channel(s)

Probability

activation
Fault type(?.) of

1 + 2

(a), (b) or (c)

1-2-1 3,1+3 or (d)

2 4 , Z - S or 2 4

3-7

For model M2, we obtain

Related fault in the 3 versions

Related fault in 2 versions

Related fault in versions and decider

Independent fault in a version,

Independent fault in the decider

4 w -
92v

4nJ

0v

40

D. Comparison to a Nonfault-Tolerant Software
The comparison to a nonfault-tolerant software leads us to

consider a software with no internal fault detection mecha-
nisms whose failure rate is equal to the sum of the elementary
failure rates of an alternate:

rk = a { q P + q P S f q P T } (9)

where qpT must be replaced by qpST when considering as-
sumption A2.

Comparison is presented for reliability only, since the notion
of safety as defined here does not apply to a software with no
internal detection mechanisms. Let define r as r = l?R/l?k;

the RB provides a reliability improvement if r < 1 . This leads
to

For M2: q T < 4P(l - @)/(I - 4 P 4 S) . (11)

Since the AT is usually less complex than P or S and as-
suming that complexity and probability of failure are related,
we have q T << q p , which enables relations (10) and (1 1) to
be verified. However, the quantification of the improvement
must be studied for each specific case.

III. N-VERSION PROGRAMMING
The potential sources of faults in the production process

of an NVP software with three versions and one decider are
shown on Fig. 6(a).

As the versions correspond to operational software of good
quality, it can be assumed that they are of equivalent reliability,
and thus:

A3) The probability of fault activation is the same for the
three versions. '

This leads to the following notation:
qIv = Prob {activation of an independent fault in one

version}
q2v = Prob {activation of a related fault between two spe-

cific versions}
q3v = Prob {activation of a related fault between the three

versions}.
Two other probabilities are defined in order to account for the
faults of the decider:

= Prob{activation of an independent fault in the
decider}

q v D = Prob {activation of a related fault between the three
versions and the decider}.

The probabilities concerning the versions could be evaluated
from controlled experiments such as [l] and [16]. However,
these experiments do not account for the analysis of the faults
in the decider. The presented models and decider-associated
probabilities enable the performance of various voters under
failure conditions such as the ones theoretically investigated
in [23] to be accounted for and may constitute a framework
for conducting more comprehensive and more adapted exper-
iments. Fig. 6(b) summarizes this notation and relates the
considered types of faults with the production process of Fig.
6(a).

Further notation will be introduced when required; in par-
ticular, let qv denote the probability of activation of a fault
in any version, thus from assumption A3 we have

q V = q3V f 2 q 2 V + q V D -k q I V - (12)

An important characteristic to account for is related to the
fact that besides error processing procedures (majority vote
based on cross-checks [8], selection of the median result [4],
or other voters identified in [23], etc.), the decider imple-
ments or not specific fault treatment mechanisms to make
a disagreeing version passive. Accordingly, the following as-
sumptions will be considered successively.

A4) No fault treatment is carried out after error processing:
should a version disagree with the result selected by the de-
cider, the version is kept in the NVP architecture and supplied
with the new input data.*

A5) Fault treatment is carried out: it consists in the identi-
fication of a disagreeing version and its elimination from the
NVP architecture.

A . NVP Model without Fault Treatment
In this case, the major specification of the decision algo-

rithm is only to provide an acceptable output result when the
versions provide at least two acceptable results.

'This assumption is used only to simplify the notation and does not alter
the significance of the results obtained; the generalization to the case where
the characteristics of the versions are distinguished can be easily deduced.

'This applies when faults exhibit a soft behavior [13], [20], i .e. , when it
is likely that the fault will not recur in next execution.

508 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 4 , APRIL 1990

P D ~ A
PLXA qD3A

1

i = 1,.2
i = 4..5

M3-Detailed NVP model without fault treatment,

P = 1 ~ 3 qlV - 3 (41V)2 - 3 QV-43V. PDIA = 1 -9DiB-qDiC.
PD3B = 1 - qD3C - 4D3A. PDiC = 1 - 9DiA - clDiB.

Fig. 7.

Due to the fact that, 1) the versions are executed in parallel
and 2) the decision of acceptance of the current execution and
selection of the “best” result is made on a relative basis, the
dependability analysis of NVP requires that the interactions
between the faults in the versions and the faults in the decider,
as well as their consequences, be precisely identified. Thus,
as for RB, we consider the following assumptions:

A6) Only a single fault type may manifest during the exe-
cution of the versions.

A7) Only a single fault type may manifest during the whole
NVP software execution (versions and decider) and no com-
pensation may take place between the errors of the versions
and of the decider.

1) Detailed NVP Model: The behavior of NVP when
considering assumption A6 is described by model M 3 shown
in Fig. 7.

State V is the state when the versions are executed. States
Di , correspond to the execution of the decider. Based on A3
and on the impact of the evaluation of acceptable, distinct
or similar erroneous results on dependability, five cases are
distinguished:

D1) no fault activation I p] ; the versions provide three ac-
ceptable results,

D2) activation of an independent fault in 1 version
[3qlv(1 - qv)2 z 3qzvl; the versions provide two acceptable
results,

D3) activation of independent faults in two or three versions
[3 (q 1 ~) ~ (1 - q v) + (q ~ v) ~ = 3 (q , ~) ~] ; the versions give three
distinct results,

D4) activation of related faults in two versions [3 q ~ v] ; the
versions provide two similar erroneous results,

D5) activation of related faults in the three versions [q3v];
the versions provide three similar erroneous results.

From these states, the nominal (fault-free) behavior b D j A]

resulting from the execution of the decider, leads to a transi-
tion from

D1 & 02 to I , since the decider evaluates three or two
acceptable results,

0 3 to B , since the decider evaluates three distinct results,
04 & D5 to C: the decider evaluates two or three similar

erroneous results.

p ’ = 1 - 3 q I v - 3W2 -WV - W D , PDlA= 1 -qDIB -9D1C

Fig. 8. M4-Simplified NVP model without fault treatment

Considering decider faults, leads to the following singular
events:

error compensation: the decider delivers an acceptable
result when evaluating, at least two distinct results (state D3),3
two (state 04) or three (state D5) similar erroneous results,
which leads to state I; the associated probabilities are denoted

rejection of an execution although at least two similar
results are provided by the versions (states D1, 0 2 , 0 4 , and
D5),4 which leads to state B: the associated probabilities are

delivery of an erroneous output result when evaluat-
ing, either at least two acceptable, or at least two distinct
erroneous results; (states D1, 0 2 , 0 4 , and D5)5 leading to
state C , the associated probabilities are denoted qDiC.

As the decision made by the decider is essentially relative,
its efficiency depends rather on the sirnilartdistinct than on
the acceptablelerroneous aspects of the results to be evalu-
ated; thus, the following assumptions can be considered in
practice to simplify model M 3 :

A8) The decider is not able to discriminate similar accept-
able results from similar erroneous results, thus: qDlB = 405s

A9) The decider has the same nominal behavior (it pro-
vides a common output result) when evaluating either two
(majority) or three similar results; accordingly:

qDiA 9

denoted qDiB,

and qD2B qD4B.

P D l A Z5 P D ~ A I qD1B 9028, and thus qDlC qD2C9
PD4A PD5A 9 qD4B = 405s 9 and thus qD4C 4D5C.
2) Simplified NVP Model: The corresponding model

(M4) can be directly derived from the analysis of the NVP
production process [Fig. 6(a)] and is shown on Fig. 8.

States D1, 02, and 0 3 are equivalent to related states of
M 3 . State D4/5’ corresponds to the activation of related faults
either 1) among the versions (merging of states 0 4 and D5
from M 3 [q R V = 3 q 2 ~ + q 3 ~]) , or 2) between the three ver-
sions and the decider [qVD] (Fig. 7).

In this case, qVD includes all the interactions between the
faults of the versions and of the decider and thus, the impact

3This would take place, for example, in the case of a median-based decision
when the erroneous results are placed on each side of the acceptable result.

4The decider is too “tight;” this results in a reliability penalty, in the case
when the similar results correspond to acceptable results.

’This case does not correspond to the case when the decider is evaluating
at least two similar erroneous results. The singularities correspond here to
the cases- hopefully rare!- when the decider outvotes acceptable results or
when the decider is too “loose.”

ARLAT et al. : DEPENDABILITY MODELING AND EVALUATION OF SOFTWARE FAULT-TOLERANT SYSTEMS 509

of the activation of an independent fault in the decider is con-
sidered only for state D1 with probability qDlB $ - q D l C .
For states 0 2 , 0 3 , and D4/5’, the description is limited to the
nominal (fault-free) behavior of the decider.

3) Processing of the Models:
For model M3,

For model M4, we have

r S = 0 {P’qDlC f qRV f qVD} (16)

for which the expressions below are close pessimistic approx-
imations:

r R =a{qD fqRV fqVD f3(q1v)’} (1 5 ’)

rS = a { q D l C + qRV + qVD}. (16’)

It is worth noting that the same expressions can be obtained
from M3, 1) when there is no compensation [qD3.4 = qD4.4 =
01 and 2) noting that expression [3q/VqDIC + 3(q/V)’qD3C]
obtained in (13) and (14) can be identified to the probability of
activation of a related fault in the versions and in the decider
[qVD] from (15) and (16). Indeed, (1 3) and (14) write as

r S a{pqDlC + qRVPD3C + qVD} (14‘)

for which it can be verified that (15’) and (16’) constitute valid
approximations. Accordingly, further analyses will be carried
out considering essentially these approximate expressions.

4) Comparison to a Nonfault-Tolerant Software: From
(1 2) the failure rate of the nonfault-tolerant software corre-
sponding to the selection of any version is expressed as

rk = aqV a{q3V + 2q2V f qVD f q/V}

= a{qkV f qVD + q/V} (17)

where qkv corresponds to the probability of activation of the
faults in the selected version that could be mapped to related
faults in the other two versions in the NVP software.

The ratio r = rR/rk is then

(1 8)
40 f qRV f qVD + 3(qIV)’ r =

qkv + qVD + qIV

p” = 1 - 3 qIv ~ 3 (qNI2 - qRV - q’VD, P’D = 1 - q’DB - q’DC = 1 - q’D
p * = l -2qN-(qV)2-q’RV-q’VD. p * D = l - q * D B - q * D € = I - q * D

Fig. 9. MS-NVP model with fault treatment.

For the comparison, we introduce the ratio i identifying the
proportion of independent faults in the selected version:

qIV iqV = i<qkv f qVD f q/V)- (19)
It follows that

As qRV = q3v + 3 q ~ and qkv = q3v + 2 q 2 ~ , we have
qRV qkv, when related faults in three versions dominate
(specification), and qRV N (3 /2)qk v , when related faults in
two versions dominate (implementations). Thus, r is com-
prised into domain determined by the lower (r ’) and upper
(r”) bounds:

r’ = qD/qV + (1 - i) + 3(i)’qV (21)

r” = qD/qV + (3 / 2) (1 - i) + 3(i)’qV. (2 2)

These expressions enable us to quantify the following quali-
tative (and intuitive) results:

the decider must be far more reliable than the versions,
if related faults dominate (i = 0) no improvement has to

be expected, which confirms the results obtained in a large
number of previous studies, e.g., see [17] and [2 2] .

B. NVP Model with Fault Treatment

In this case (since assumption A5 applies), a supplementary
specification of the decider is to correctly diagnose a disagree-
ing version when two versions provide acceptable results.

I) Description of the Model: The corresponding model
(M5) is shown on Fig. 9. Submodel SM1 is equivalent to
model M4, the only differences concern

the elimination of the states Di with an output transition
equal to 1 by merging them with the next state,

the modification of the probabilities of activation of a
fault in the decider to account for the change in its specifica-
tion, 1) change of qVD into qbD6 and 2) change of 401; into
qbi (i E { B , C }) ,

61n particular, qLD includes the risk of failure of the diagnosis of the
decider: discarding a version providing an acceptable result.

510 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 4, APRIL 1990

Fig. 10. M6-Model for reliability and safety analysis.

when an independent fault has been activated in a single
version, this version is discarded and thus SM2 is entered.

Submodel SM2 has the same structure as SM1; however, as
only two versions are used, the probabilities of fault activation
in the versions and in the decider are modified in accordance;
in particular, ql;lV = q 2 ~ .

2) Processing of the Model: As in model M5 the non-
failed states do not constitute an irreducible Markov chain,
it is not possible to obtain equivalent failure rates. However,
equivalent failure rates may be derived for each submodel in
isolation:

rs2 = U { q & + qiV + q b } * (26)

Reliability and safety of the model can then be analyzed by
processing model M6 of Fig. 10, where X = R for reliability
and X = S for safety.

Reliability and safety and the associated mean times to fail-
ure express as

Analysis of these expressions requires that the rates be pre-
cisely evaluated which is a rather difficult task due to the
uncertainty in the values of the probabilities from which they
are derived. Nevertheless, interesting results can be obtained
with the following assumptions:

A10) The decider has the same behavior when evaluat-
ing either three versions (SM1) or two versions (SM2), i.e.,

A l l) Due to the intrinsic simplicity of the algorithm in-
volved, the behavior of the decider is not significantly al-
tered when its specifications are modified from assumption A4

qb; M 4;; and q L D q ; D .

(model M4) to assumption A5 (model M5), i.e., q D l j qh;

According to A10, it can be verified from relations (23) to
and qVD qLD.

(26), that

r R 1 = (J{qb + 4 3 V f 3q2V + qbD + 3(q1V>~} (29)

rS1 =(J{qbc + q 3 V +3q2V+qbD) (30)

r R 2 (J{qb + 4 2 V + q b D + 2qIV + (qIV)2} (31)

rS2 = a{qbC + q2V + q:D). (32)

These relations show that rsl > rs2 and that
r R I < rR2, when independent faults in the versions dom-

inate,
r R 1 > rR2, when related faults among the versions dom-

inate.
Expressions (28) show that the decision to discard the dis-

agreeing version improves MTTFs, which is not always the
case for MTTFR .7 Analogous conclusions can be derived from
expressions (27) for S(t) and R (t) .

More generally, the expressions confirm a general system
reliability result, i.e., it is better to use two versions than three
versions, when emphasis is put on safety rather than on reli-
ability. Furthermore, in the case of reliability, the impact of
related faults is clearly indicated by the fact that no improve-
ment has to be expected when using three versions instead of
two if related faults among the versions dominate significantly
over independent faults [22].

IV. RB AND NVP COMPARISON

In order to be homogeneous, the comparison is carried out

assumptions A2 and A7 hold (a single fault type activa-

no specific fault treatment is considered for NVP.
For each architecture, specific notations have been used.

However, similar expressions can be derived for r R and rs,
based on the following notation:

q 1 = Prob{independent failure of one variant lexecution},
thus: 41.m = q p 4s and ~ I , N V P = q1v

qCM = Prob{common-mode failurelexecution} , thus: qCM,RB

Accordingly, relations (7) with qT << 1 and (15') become,

only when

tion and no error compensation within the whole software),

-
- qpST = qpS f q T and q C M , NVP = qVD + q R V f 4 0 .

respectively,

for RB: r R = (J{qCM,RB + (qI,RBl2) (33)

r R = (J {qCM, NVP f 3(qI, NVP>2 1. for NVP:

Although the form of these expressions would suggest that
RB is better than NVP, it has to be noted that the influence of
the various terms may be different. Indeed, if the probabilities
of activation of 1) an independent fault in one variant [q p
(or q s) and q ~ v] and 2) of related faults between variants [q p s

(34)

'Indeed, l / r R I (resp., l/rs,) can be interpreted as the MTTFR (resp.,
MTTFs) of the NVP software when no fault treatment is carried out (model
M4).

ARLAT et al. : DEPENDABILITY MODELING AND EVALUATION OF SOFTWARE FAULT-TOLERANT SYSTEMS

~

51 1

and q ~ v] , are of the same order of magnitude, however, the
probabilities of activation of 1) an independent fault in the de-
cider [qr and qo] and 2) of related faults between the variants
and the decider [qpST and q V D] are likely to be greater for
RB than for NVP; this is mainly due to the fact that the AT
is specific to each application, whereas the decider in NVP is
generic to a large extent.

It follows that independent failures for the variants have
more impact for the NVP, whereas the impact of the decider
is lower for this architecture. However, a precise knowledge
of these probabilities would be needed in order to perform a
more detailed comparison.

Considering safety analysis, we have obtained

for NVP: rS = u { q R V f q V D $- q D l C) (36)

Related faults among variants have no influence for RB, but
are of prime importance for NVP. This is a consequence of the
fact that for RB an absolute decision is taken for each alternate
against the specification and that for NVP the decision is made
on a relative basis among the results provided by the versions.

Due to the very nature of the NVP decider, qolc may be
made very low and as q v ~ << q R V , q R V has to be compared

Finally it is worth noting that only partial conclusions can be
drawn from this analysis. Additional features need to be taken
into account, such as the fact that, for RB, service delivery is
suspended during error recovery, i.e., when the secondary is
invoked.

with q p s T .

V. NESTED RECOVERY BLOCKS

This section provides a preliminary extension of the analy-
sis of the RB architecture to account for the specific case of
nested RB’s. Nested RB’s are very interesting and give rise
to stimulating discussions, but have received little treatment
from the modeling point of view. We simply illustrate here,
how a simple case of nested RB’s can be handled with the
modeling and evaluation approach presented. Let us consider
for example that P is itself a RB; P will be called the nested
block (NB) .

The production process of a RB [Fig. 2(a)] is still the same,
but box 4 becomes specification of the NB, and it is decom-
posed into an equivalent production process as for the original
RB (Fig. 11).

It can be seen that related faults due to the specification
still remain; on the contrary related faults introduced, during
separate implementations (channels a , b , c) are moved to the
lower level, i.e., between the alternates composing the NB
and the associated AT, S , and the original AT.

Independent faults in S are not changed either, but indepen-
dent faults in P are split into related and independent faults in
the NB.

It follows that the common-mode failure probability (qCM)
must be split into specifcation and implementation common-
mode failure probabilities denoted (qCMS) and (qCMI), respec-
tively. q C M S is the same for the original and the nested RB’s,

b*
C*

Fig. 11. Nested RB.

but the probability of common-mode failure due to implemen-
tation faults has to be distinguished for the original (qCMI) and
the nested (q&) RB.

The new equivalent failure rate is deduced directly from
(33) as

ri = C‘{qCMS + q & f I f [q&M + (qi)21q1) (37)

where qkM and qi denote, respectively, the probabilities of
common-mode and independent failure of the nested block.

The important question is: how does I?; compare to r R ?
For this concern, it is worth noting that NB’s correspond to
1) a step in the decomposition of the complexity of the soft-
ware and 2) an increase in the redundancy, and as such it can
be expected that the reliability be improved as shown in [7]
where the reliability of an RB with two and more alternates
is evaluated.

Formula (37) can be easily generalized to the cases of 1)
successive NB’s, 2) NB’s in both P and S , and 3) more than
one NB in each alternate.

VI. CONCLUSION

The paper presented a detailed reliability and safety anal-
ysis of the two major software fault-tolerance approaches: RB
and NVP.

The methodology used for modeling is based on 1) the
identification of the possible types of faults introduced during
the specification and the implementation, 2) the analysis of
the behavior following fault activation.

An important comment concerns the fault assumption used
in the modeling. The most significant issue for evaluation of
diversified software in operation concerns the types of errors
(distinct or similar) that result from the activation of faults. We
considered a direct mapping of these errors with two distinct
fault classes: independent and related faults. Such a mapping
is pessimistic as it enables us to incorporate only positive
correlation in the manifestation of related faults. As recently
evidenced in [6], another form of correlation (negative cor-
relation) does exist among related faults which has a benefi-
cial consequence on the execution of multivariant software in
forcing the delivery of distinct errors. However, although they

512 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 4, APRIL 1990

could be traced to (negatively correlated) related faults, faults
leading to distinct errors are not distinguishable at the execu-
tion level from independent faults and thus they both can be
merged into a single category: the independent faults. A dual
discussion applies also to similar errors since in some-very
rare (e.g., see [3])-cases they also could be traced to in-
dependent faults. It is worth noting that the detailed analysis
of the relationship between classes of errors and faults would
result in a further increase in the-already large-number of
parameters of the models. In addition, owing to the promi-
nent influence of the deciders in the failure process of a fault-
tolerant software, such an analysis should not be limited to
examining the intervariant correlations, but should cover the
positive and negative correlations between the variants and the
deciders, as well.

The main outcome of the evaluation carried out concerns
the derivation of analytical results enabling us 1) to identify
the conditions of improvement, when compared to a nonfault-
tolerant software, that could result from the use of RB (the
acceptance test has to be more reliable than the alternates) and
NVP (related faults among the versions and the decider have
to be minimized) and 2) to reveal the most critical types of
related faults. In particular, for safety, the related faults be-
tween the variants have a significant impact for NVP, whereas
only related faults between the alternates and the acceptance
test have to be considered for R B .

The study of the nested RB’s showed that 1) the proposed
analysis approach can be applied to such realistic software
structures and 2) when an alternate is itself an RB, the results
are analogous to the case of the addition of a third alternate.
The reliability analysis showed that an improvement has to be
expected, but that this improvement would be very low.

The specific study of the discarding of a failed version
in NVP showed that this strategy is always worthwhile for
safety, whereas, for reliability, it is all the more beneficial as
independent faults dominate.

REFERENCES
T. Anderson, P. A. Barrett, D. Halliwell, and M. R. Moulding,
“Software-fault tolerance: An evaluation,” IEEE Trans. Software
Eng., vol. SE-11, no. 12, pp. 1502-1510, Dec. 1985.
J. Arlat, K. Kanoun, and J.-C. Laprie, “Dependability evaluation of
software fault-tolerance,” in P m . FTCS-18, June 1988, pp, 142-147.
A. Avizienis and J . P. J . Kelly, “Fault-tolerance by design diversity:
Concepts and experiments,” IEEE Comput. Mag., pp. 67-80, Aug.
1984.
A. Avizienis, P. Gunninberg, J. P. 3. Kelly, R. T. Lyu, L. Strigini,
P. J . Traverse, K. S. Tso, and U. Voges, “Software fault-tolerance by
design diversity-DEDIX: A tool for experiments,” in Proc. SAFE-
COMP’85, Como, Italy, Oct. 1985, pp. 173-178.
A. Avizienis and J. C. Laprie, “Dependable computing: From concepts
to design diversity,” Proc. ZEEE, vol. 74, no. 5, pp. 629-638, May
1986.
P. G. Bishop and F. D. Pullen, “Error masking: A source of fail-
ure dependency in multiversion programs,” in Proc. 1st Znt. Work-
ing Conf. Dependable Comput. Critical Appl. , Santa Barbara, CA,

S. D. Cha, “A recovery block model and its analysis,” in Proc. SAFE-
COMP’86, Sarlat, France, Oct. 1986, pp. 21-26.
L. Chen and A. Avizienis, ‘“-Version programming: A fault-tolerance
approach to reliability of software operation, ” in Proc. FTCS8,
Toulouse, France, June 1978, pp, 3-9.
RC. Cheung, “A user-oriented software reliability model,” IEEE
Trans. Software Eng., vol. SE-6, no. 2, pp. 118-125, Mar. 1985.

Aug. 1989, pp. 25-32.

A. Csenki, “Recovery block reliability analysis with failure cluster-
ing,” in P m . 1st Inc. Working Conf. Dependabk Comput. Crit-
ical Appl. , Santa Barbara, CA, Aug. 1989, pp. 33-42.
D. E. Eckhardt and L. D. Lee, “A theoretical basis for the analysis
of multiversion software subject to coincident errors,” IEEE Trans.
Software Eng., vol. SE-11, no. 12, pp. 1511-1517, Dec. 1985.
W. Feller, An Introduction to Probability Theory and its Applica-
tion, Vol. I .
J. N. Gray, “Why do computers stop and what can be done about it?,”
in Proc. 5th SRDSDS, Los Angeles, CA, Jan. 1986, pp. 3-12.
A. Grnarov, J . Arlat, and A. Avizienis, “On the performance of soft-
ware fault-tolerance strategies,” in Proc. FTCSIO, Kyoto, Japan, Oct.

H. Hecht, “Fault tolerant software,” ZEEE Trans. Reliability, vol.
R-28, no. 3, pp. 227-232, Aug. 1979.
J. C. Knight, N. G. Leveson, and L. D. St. Jean, “A large scale ex-
periment in N-version programming,” in Proc. FTCSI5, Ann Arbor,

J. C . Knight and N. G. Leveson, “An empirical study of failure proba-
bilities in multi-version software,” in Proc. FTCSZ6, Vienna, Austria,
July 1986, pp. 165-170.
J. -C. Laprie, “Dependability evaluation of software systems in opera-
tion,” IEEE Trans. Software Eng., vol. SE-10, no. 6, pp. 701-714,
Nov. 1984.
J.-C. Laprie, “Dependability computing and fault-tolerance: Concepts
and terminology,” in P m . FTCS15, Ann Arbor, MI, July 1985, pp.
2-11.
J.-C. Laprie, J . Arlat, C. Beounes, K. Kanoun, and C . Hourtolle,
“Hardware- and software-fault tolerance: Definition and analysis of
architectural solutions,” in Proc. FTCSl7, Pittsburgh, PA, July 1987,

B. Littlewood, “Software reliability model for modular program struc-
ture,” ZEEE Trans. Reliability, vol. R-28, no. 3, pp. 241-246, Aug.
1985.
B. Littlewood and D. R. Miller, “A conceptual model of multi-
version software,” in Proc. FTCS17, Pittsburgh, PA, July 1987, pp.
150- 155.
P. R. Lorczak, A. K. Caglayan, and D. E. Eckhardt, “A theoretical
investigation of generalized voters for redundant systems,” in Proc.
FTCS-19, Chicago, IL, June 1989, pp. 444451.
M. Mulazzani, “Reliability versus safety,” in P m . SAFECOMP’85,
Como, Italy, Oct. 1985, pp. 141-1146.
A. Pages and M. Gondran, Fiabilite des systemes. France: Eyrolles,
1980.
B. Randell, “System structure for software fault tolerance,” ZEEE
Trans. Software Eng., vol. SE-1, no. 2, pp. 220-232, June 1975.
F. Saglietti and W. Ehrenberger, “Software diversity- Some consider-
ations about its benefits and its limitations,” in Proc. SAFECOMP’86,
Sarlat, France, Oct. 1986, pp. 27-34.
R. K. Scott, J . W. Gault, and D. F. McAllister, “Fault-tolerant soft-
ware reliability modeling,” IEEE Trans. Software Eng., vol. SE-13,

K. S. Tso, A. Avizienis, and J. P. J. Kelly, “Error recovery in multi-
version software,” in Proc. SAFECOMP’86, Sarlat, France, Oct.
1986, pp. 35-41.

New York: Wiley, 1968.

1980, pp. 251-253.

MI, July 1985, pp. 135-139.

pp. 116-121.

pp. 582-592.

Jean Arlat (M’80) was born in Toulouse, France,
in 1953. He received the Certified Engineer degree
from the National Institute of Applied Sciences of
Toulouse (INSAT) in 1976 and the Doctor-Engineer
degree from the National Polytechnic Institute of
Toulouse (INPT) in 1979.

He is Charge de Recherche with the National
Center of Scientific Research (CNRS) and member
of the group Dependable Computing and Fault Tol-
erance of the Laboratory for Automatics and Sys-
tems Analysis (LAAS) of the CNRS that he first

joined in 1976. From September 1979 to August 80, he spent a postdoctoral
year in the Computer Science Department of the University of California, Los
Angeles, (UCLA), working on the dependability and performance evaluation
of software fault tolerance architectures. Since 1980 he has been a Research
Staff Member at LAAS-CNRS. His research interests focus on the evalua-
tion of hardware-and-software fault-tolerant systems including both analytical
modeling and experimental fault injection approaches.

ARLAT et al.: DEPENDABILITY MODELING AND EVALUATION OF SOFTWARE FAULT-TOLERANT SYSTEMS 513

Dr. Arlat is a member of the Fault-Tolerant Computing and Simulation
Technical Committees of the IEEE Computer Society. He is also a member
of the AFCET Working Group Dependability of Computing Systems and of
the French branch of the Computer Measurement Group (CMGF).

Karama Kanoun received the Certified Engineer
degree from National School of Civil Aviation,
Toulouse, France in 1977, the Doctor-Engineer de-
gree and the Doctor-es-Science degree from the Na-
tional Polytechnic Institute of Toulouse in 1980 and
1989, respectively.

She is currently Chargee de Recherche at CNRS.
She joined LAAS in 1977 as a member of the
Fault-Tolerance and Dependable Computing group.
Her current research interests include modeling and
evaluation of computer system dependability con-

sidering hardware as well as software aspects. She has cdnducted several
research contracts and she has been a consultant for some French companies
and for the International Union of Telecommunications.

Dr. Kanoun is a member of the working group of the European Work-
shop on Industrial Computer Systems (EWICS): “Technical Committee
7-Reliability, Safety and Security” and a member of the AFCET working
group Dependability of Computing Systems.

Jean-Claude Laprie (M’90) received the Certified
Engineer degree from the Higher National School
for Aeronautical Constructions, Toulouse, France,
in 1968, the Doctor in Engineering degree in auto-
matic control, and the Doctor es-Sciences degree in
Computer Science from the University of Toulouse,
in 1971 and 1975, respectively

He is currently Directeur de Recherche of CNRS,
the National Organization of Scientific Research.
He joined LAAS in 1968, where he has directed the
research group on Fault Tolerance and Dependable

Computing since 1975. His research has focused on dependable computing
since 1973, and especially on fault tolerance and on dependability evaluation,
subjects on which he has authored and coauthored more than 50 papers; he
is the Principal Investigator of several contracts in these areas of interest.
From January to August 1985, he was an Invited Visiting Professor at the
UCLA Department of Computer Science, Los Angeles. He has also acted as
a consultant and as an expert in the area of dependable computing in France
and abroad for government agencies as well as industrial organizations.

Dr. Laprie served in 1978 as the General Chairman of the 8th Interna-
tional Symposium on Fault-Tolerant Computing, and on program committees
for numerous conferences and workshops. He was the Chairman of the IEEE
Computer Society’s Technical Committee on Fault-Tolerant Computing in
1984 and 1985. He is a founding member of the IFIP Workmg Group on
Reliable Computing and Fault Tolerance, which he is presently chairing He
is the founding Chairman of the AFCET (French Association for Economics
and Techniques of Cybernetics) Group on Computing Systems Dependability.
He is co-editor of the Springer Verlag series on Dependable Computing and
Fault Tolerant Systems. He is a member of the Association for Computing
Machinery and AFCET

