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Softwarefailed 

Dependability Modeling and Evaluation of Software 

C 

Fault-Tolerant Systems 

Abstmct-The paper provides dependability modeling and 
evaluation (encompassing reliability and safety issues) of the 
two major fault tolerance software approaches: recovery Mocks 
(RB) and N-version programming (NVP) . The study is based 
on the detailed analysis of software fault-tolerance architectures 
able to tolerate a single fault (RB: two alternates and an accep- 
tance test, NVP: three versions and a decider). 

Index Terms-Dependability evaluation, dependability mod- 
eling, software design diversity, software fault tolerance. 

I. INTRODUCTION 

NUMBER of papers devoted to the dependability analysis A of software fault tolerance approaches have appeared in 
the literature, for which two major goals can be identified: 
1) modeling and evaluation of the dependability measures [7], 
[IO], [ 141, [ 151, [ 181, 1241, [28], [29], 2) detailed analysis of 
the dependencies in diversified software [6], [ I l l ,  [22], [27]. 

This paper is an elaboration on the work presented in [2] 
and belongs to the first class and analyzes the two most doc- 
umented approaches to software fault tolerance: RB [26] and 
NVP [8]. The major extensions to published work concern: 1) 
the definition of a unified modeling framework based on the 
identification of the possible types of faults through the anal- 
ysis of the software production process [ 181, 2) the evaluation 
of both reliability and safety measures, and 3) the consider- 
ation of two specific characteristics of the architectures that 
have received little treatment up to now: the discarding of a 
failed version, for NVP, and the nesting of the blocks, for 
RB . 

Two classes of faults are considered: independent faults 
and related faults [3]. Related faults result either from a fault 
in the common specification, or from dependencies in the sep- 
arate designs and implementations. Two types of related faults 
may be distinguished: 1) among several variants (alternates for 
RB or versions for NVP) and 2) among one or several variants 
and the decider (the acceptance test of the RB or the voting 
algorithm of NVP). Related faults manifest under the form 
of similar errors, whereas we shall assume that independent 
faults cause distinct errors. 

Since the faults considered are design faults that are intro- 
duced in the software, either during its specification or during 

Manuscript received July 23, 1989; revised November 20, 1989. This work 
was carried out in the framework of the Hermes European Space Shuttle 
Project and of the ESPRIT Project “Predictably Dependable Computing Sys- 
tems.” 

The authors are with the Laboratoire d’Automatique et d’Analyse des 
Systtmes du Centre National de la Recherche Scientifique (LAAS-CNRS), 
Toulouse, France. 

IEEE Log Number 8933892. 

r-Ty Idisoftwae I I I , 
End of 

Execution Restoration 
of sewice Software under Execution 

L I I  I I  

Fig. 1. General behavior model. 

its implementation, we shall start the analysis of each approach 
by relating the various types of faults to the production process 
U81. 

When a failure occurs, the detection of the inability to de- 
liver acceptable results may be an important consideration, in 
the sense that an undetected failure may have, and generally 
has, catastrophic consequences. Although the notion of safety 
strongly depends on the considered application, in practice, 
the detection of the inability to deliver proper service is a pre- 
requisite to initiate the specific safety procedures. A detected 
failure (no acceptable result is identified by the decider and 
no output result is delivered) will thus be termed as a benign 
failure, whereas an undetected failure (an erroneous result is 
delivered) will be termed as a catastrophic failure. 

As usual, we shall consider reliability as a measure of the 
time to failure and safety as a measure of the time to catas- 
trophic failure. 

Software faults can manifest only when it is executed. We 
shall thus consider the execution process and the fault mani- 
festation process. 

The general behavior model is given in Fig. 1. Transition 
from B to I stands only for safety, in which case it is assumed 
that it is possible to restore service delivery by means of pro- 
cedures carried out at an upper level, i.e., supplying input 
data different from those having led to benign failure. State 
class C is absorbing for safety whereas both state classes B 
and C are absorbing for reliability. 

We shall assume that the behavior of the systems under con- 
sideration can be modeled as a Markov chain; for a discussion 
of this assumption, see, e.g., [9], [18], [21]. The execution 
process will be modeled through execution rates and the fault 
manifestation process will be modeled through probabilities 
conditioned on the execution of the various components of 
the software: the variants and the decider. The transition rates 
outputting from the nonabsorbing states are of the form 

A..  r j  - - Pij . X i  with C p i j  = 1 
i 
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where i designates a nonabsorbing state, A, is the rate asso- 
ciated to the tasks executed in state i, and pij represents the 
probability of the transition from state i to statej of the model. 

When the nonabsorbing states (nonfailed states for reliabil- 
ity, nonfailed and benign failure states for safety) constitute an 
irreducible set [12] (i.e., the graph associated with the non- 
absorbing states is strongly connected), it is shown in [25] 
that the absorption process is asymptotically a homogeneous 
Poisson process (HPP), whose failure rate r is given by 

tance test (AT). During the diversified designs and implemen- 
tations of P,  S ,  and AT, independent faults may be created. 
However, due to dependencies, some related faults between 
P and S or between P,  S ,  and the AT may be introduced. 
Faults committed during common specification (path 1 -+ 2, 
1 + 3, 1 + 2 + 3) are likely to be related faults and, as such, 
the cause of similar errors. Faults created during the imple- 
mentation can also lead to related faults between P,  S ,  and 
AT (channels a ,  6 ,  c ) ;  all these faults are summarized in Fig. 

n(transition rates of the considered path) r =  
paths from n { (output rates of the considered state) 

initial state (1) to states in path 
absorbing states (1 excepted) 

The rate of convergence of the absorption process towards 
the asymptotic HPP is directly related to the execution rates; 
it is thus reached very rapidly (say, after three executions). 
We shall adopt this approach in the following whenever pos- 
sible, and we shall denote as equivalent rate, the rate of the 
asymptotic HPP. r, will denote the equivalent failure rate 
for reliability and I?, is the equivalent catastrophic failure 
rate for safety. 

Using relations 1) and 2), it can be easily verified that the 
equivalent failure rates can be expressed simply using: 1) the 
departure rate U from state Z of Fig. 1 and 2) the probability 
of failure of the software obtained from the embedded discrete 
chain. Let QR (resp., Qs)  be the probability of failure (resp., 
catastrophic failure), thus, 

rR = UQR,  rs = U ~ s .  (3) 

Accordingly, reliability (R( t ) )  and safety ( S ( t ) )  are given by 

R(t)  = exp(-rRt) S ( t )  = exp(-Tst). (4) 

As QR and Qs are evaluated directly from the discrete 
Markov chain, in the sequel we focus essentially in the pre- 
sentation of the discrete Markov chains describing the fault 
manifestation process of the fault-tolerant softwares. 

Finally, it is worth noting that we focus on the fault-tolerant 
software itself, i.e., the underlying mechanisms are not con- 
sidered: 1) recovery point establishment and restoration for 
RB, and 2)  synchronization of the versions, cross-check points 
establishment for NVP. 

The sequel of the paper is organized into four sections. 
Sections I1 and I11 present, respectively, the analyses of RB 
and NVP: for each approach a detailed model based on the 
production process of the fault-tolerant software is first estab- 
lished and then it is simplified through the assumptions that 
only a single fault type may manifest during execution of the 
fault-tolerant software and that no error compensation may 
take place within the software. Section IV introduces some 
elements for RB and NVP comparison. Section V analyzes 
the nested RB’s. 

11. RECOVERY BLOCKS 

Fig. 2(a) shows the production process of an RB with two 
alternates [a primary ( P )  and a secondary (91, and one accep- 

2(b). It is worth noting that the probabilities listed could be 
obtained from controlled experiments such as the one reported 
in [l]. 

For deriving the fault manifestation model, a question im- 
mediately arises: what types of faults are considered as pos- 
sibly manifesting as the consequence of their activation? This 
leads to consider successively the following assumptions: 

Al) only a single fault type (either independent or related) 
may manifest during the execution of an alternate and the AT 
and no error compensation may take place within an alter- 
nate and the AT during an execution, i.e., an error is either 
detected and processed or leads to catastrophic failure. 

A2) only a single fault type may manifest during the exe- 
cution of the whole RB and no error compensation may take 
place within the RB. 

The detailed model will be based on assumption A 1, which 
enables some singular behaviors of the decider to be charac- 
terized. 

Assumption A2 will serve as a basis for the simplified 
model. 

A .  Detailed RB Model 
Fig. 3 describes the M1 model based on the notation of Fig. 

2(b). P,  T P ,  S ,  and TS form the Software under Execution 
class from Fig. 1, respectively: execution of P,  execution of 
AT after P,  execution of S ,  execution of AT after S .  

Different states are considered for TP to account for the 
various types of faults that may be activated in P: 

TP1) no fault activated [ p p ] ,  

TP2) activation of an independent fault [qp], 
TP3) activation of a related fault between P and S [qps] ,  
TP4) activation of a related fault between P and the AT 

The partition leads to a subsequent decomposition of states 
S and TS. It is assumed that no fault can be activated in AT 
after activation of an independent fault in P (unity transition 
from state TP2): these faults are considered as consisting es- 
sentially of related faults and, as such, are accounted for in 
probability qpT  leading to state TP4. Activation of a related 
fault between P and S (state TP3) corresponds to a detected 
failure and leads through S3 and TS3 to state B.  The activation 
of a related fault between P and AT (state TP4) corresponds 
to a catastrophic failure and leads to state C. 

[ q P T ] .  
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SPEClFlCATlON 
OF THE BLOCK 

* Since the activation of a related fault between P and AT leads to RB failure, no 
further decomposition with respect to the faults of S is necessary. 

(b) 

and notation. 
Fig. 2. RB analysis. (a) Fault sources in production process. (b) Fault types 

Due to the fact that S is executed only when an indepen- 
dent fault has been activated either in P or in AT, conditional 
probabilities have been introduced in the model; in particular 

qs = Prob {activation of an independent fault in SJS is 
executed after activation of a fault in P }  

qi = Prob {activation of an independent fault in SJS is 
executed after activation of a fault in AT}. 

The same differences in the conditions apply for qsT and 
qiT and also for the probabilities of activation of an inde- 
pendent fault in the AT following the execution of S: 41- and 

The path T = {P ,  TP1, S 1, TS 1, I} corresponds to an er- 
ror compensation identifying a singular behavior of the AT: 
the AT rejects an acceptable result provided by P and subse- 
quently accepts the result given by S .  

It is worth noting that MI can be reduced when considering 

4;. 

P T  

Fig. 4. Model M'l. 

that 

- q T  % q& , qs NN q i  , q S T  "N qiT:  the probabilities of acti- 
vation of a fault in S (or AT) following the activation of 
an independent fault either in P or in AT are equivalent, 
since in any case their execution is a consequence of the 
application of error-prone input data, 

- p;! << 1: error compensation (path a) is unlikely to oc- 
cur, 

- each state belonging to the Software under Execution 
class with an outgoing transition equal to 1 can be 
merged with the next state, 

M1 can thus be reduced to model M'1 of Fig. 4. 

B .  Simplified RB Model 
In this case, since assumption A2 applies, a single fault type 

can be activated in the whole RB; thus, transitions from S1 
and S2 to TS4 of model M1 (resp., SI to C for M'l) must 
be deleted. This is equivalent to make qsr = 0 and to merge 
the related faults between S and AT with the related faults 
between P and AT; it follows that q p T  becomes qpsr. The 
corresponding model (M2) is given in Fig. 5. 

C .  Processing of the Models 

for models M1 and M' 1 : 
Assuming that p p  % 1 - qp and p s  FZ 1 - qs ,  we obtain 

for reliability: r, = U {qps + qpT + qT 
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Paths where faulMs) 
is(are) created or 

dependency channel(s) 

Probability 

activation 
Fault type(?.) of 

1 + 2  

(a), (b) or (c) 

1-2-1 3,1+3 or (d) 

2 4 , Z - S  or 2 4  

3-7 

For model M2, we obtain 

Related fault in the 3 versions 

Related fault in 2 versions 

Related fault in versions and decider 

Independent fault in a version, 

Independent fault in the decider 

4 w -  
92v 

4nJ 

0v 

40 

D. Comparison to a Nonfault-Tolerant Software 
The comparison to a nonfault-tolerant software leads us to 

consider a software with no internal fault detection mecha- 
nisms whose failure rate is equal to the sum of the elementary 
failure rates of an alternate: 

rk = a { q P  + q P S  f q P T }  (9) 

where qpT  must be replaced by qpST when considering as- 
sumption A2. 

Comparison is presented for reliability only, since the notion 
of safety as defined here does not apply to a software with no 
internal detection mechanisms. Let define r as r = l?R/l?k; 

the RB provides a reliability improvement if r < 1 .  This leads 
to 

For M2: q T  < 4P(l  - @)/(I - 4 P 4 S ) .  (11) 

Since the AT is usually less complex than P or S and as- 
suming that complexity and probability of failure are related, 
we have q T  << q p ,  which enables relations (10) and (1 1) to 
be verified. However, the quantification of the improvement 
must be studied for each specific case. 

III. N-VERSION PROGRAMMING 
The potential sources of faults in the production process 

of an NVP software with three versions and one decider are 
shown on Fig. 6( a). 

As the versions correspond to operational software of good 
quality, it can be assumed that they are of equivalent reliability, 
and thus: 

A3) The probability of fault activation is the same for the 
three versions. ' 

This leads to the following notation: 
qIv = Prob {activation of an independent fault in one 

version} 
q2v = Prob {activation of a related fault between two spe- 

cific versions} 
q3v = Prob {activation of a related fault between the three 

versions}. 
Two other probabilities are defined in order to account for the 
faults of the decider: 

= Prob{activation of an independent fault in the 
decider} 

q v D  = Prob {activation of a related fault between the three 
versions and the decider}. 

The probabilities concerning the versions could be evaluated 
from controlled experiments such as [l] and [16]. However, 
these experiments do not account for the analysis of the faults 
in the decider. The presented models and decider-associated 
probabilities enable the performance of various voters under 
failure conditions such as the ones theoretically investigated 
in [23] to be accounted for and may constitute a framework 
for conducting more comprehensive and more adapted exper- 
iments. Fig. 6(b) summarizes this notation and relates the 
considered types of faults with the production process of Fig. 
6(a). 

Further notation will be introduced when required; in par- 
ticular, let qv denote the probability of activation of a fault 
in any version, thus from assumption A3 we have 

q V  = q3V f 2 q 2 V  + q V D  -k q I V -  (12) 

An important characteristic to account for is related to the 
fact that besides error processing procedures (majority vote 
based on cross-checks [8], selection of the median result [4], 
or other voters identified in [23], etc.), the decider imple- 
ments or not specific fault treatment mechanisms to make 
a disagreeing version passive. Accordingly, the following as- 
sumptions will be considered successively. 

A4) No fault treatment is carried out after error processing: 
should a version disagree with the result selected by the de- 
cider, the version is kept in the NVP architecture and supplied 
with the new input data.* 

A5) Fault treatment is carried out: it consists in the identi- 
fication of a disagreeing version and its elimination from the 
NVP architecture. 

A .  NVP Model without Fault Treatment 
In this case, the major specification of the decision algo- 

rithm is only to provide an acceptable output result when the 
versions provide at least two acceptable results. 

'This assumption is used only to simplify the notation and does not alter 
the significance of the results obtained; the generalization to the case where 
the characteristics of the versions are distinguished can be easily deduced. 

'This applies when faults exhibit a soft behavior [13], [20], i .e. ,  when it 
is likely that the fault will not recur in next execution. 
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P D ~ A  
PLXA qD3A 

1 

i = 1,.2 
i = 4..5 

M3-Detailed NVP model without fault treatment, 

P =  1 ~ 3 qlV - 3 (41V)2 - 3 QV-43V.  PDIA = 1 -9DiB-qDiC.  
PD3B = 1 - qD3C - 4D3A. PDiC = 1 - 9DiA - clDiB. 

Fig. 7. 

Due to the fact that, 1) the versions are executed in parallel 
and 2) the decision of acceptance of the current execution and 
selection of the “best” result is made on a relative basis, the 
dependability analysis of NVP requires that the interactions 
between the faults in the versions and the faults in the decider, 
as well as their consequences, be precisely identified. Thus, 
as for RB, we consider the following assumptions: 

A6) Only a single fault type may manifest during the exe- 
cution of the versions. 

A7) Only a single fault type may manifest during the whole 
NVP software execution (versions and decider) and no com- 
pensation may take place between the errors of the versions 
and of the decider. 

1) Detailed NVP Model: The behavior of NVP when 
considering assumption A6 is described by model M 3  shown 
in Fig. 7. 

State V is the state when the versions are executed. States 
Di ,  correspond to the execution of the decider. Based on A3 
and on the impact of the evaluation of acceptable, distinct 
or similar erroneous results on dependability, five cases are 
distinguished: 

D1) no fault activation I p ] ;  the versions provide three ac- 
ceptable results, 

D2) activation of an independent fault in 1 version 
[3qlv( 1 - qv)2 z 3qzvl; the versions provide two acceptable 
results, 

D3)  activation of independent faults in two or three versions 
[ 3 ( q 1 ~ ) ~ (  1 - q v ) + ( q ~ v ) ~  = 3 ( q , ~ ) ~ ] ;  the versions give three 
distinct results, 

D4) activation of related faults in two versions [ 3 q ~ v ] ;  the 
versions provide two similar erroneous results, 

D5)  activation of related faults in the three versions [q3v]; 
the versions provide three similar erroneous results. 

From these states, the nominal (fault-free) behavior b D j A ]  

resulting from the execution of the decider, leads to a transi- 
tion from 

D1 & 02 to I ,  since the decider evaluates three or two 
acceptable results, 

0 3  to B ,  since the decider evaluates three distinct results, 
04 & D5 to C: the decider evaluates two or three similar 

erroneous results. 

p ’ =  1 - 3 q I v  - 3W2 -WV - W D ,  PDlA= 1 -qDIB -9D1C 

Fig. 8. M4-Simplified NVP model without fault treatment 

Considering decider faults, leads to the following singular 
events: 

error compensation: the decider delivers an acceptable 
result when evaluating, at least two distinct results (state D3),3 
two (state 04) or three (state D5) similar erroneous results, 
which leads to state I; the associated probabilities are denoted 

rejection of an execution although at least two similar 
results are provided by the versions (states D1, 0 2 ,  0 4 ,  and 
D5),4 which leads to state B: the associated probabilities are 

delivery of an erroneous output result when evaluat- 
ing, either at least two acceptable, or at least two distinct 
erroneous results; (states D1, 0 2 ,  0 4 ,  and D5)5 leading to 
state C ,  the associated probabilities are denoted qDiC. 

As the decision made by the decider is essentially relative, 
its efficiency depends rather on the sirnilartdistinct than on 
the acceptablelerroneous aspects of the results to be evalu- 
ated; thus, the following assumptions can be considered in 
practice to simplify model M 3 :  

A8) The decider is not able to discriminate similar accept- 
able results from similar erroneous results, thus: qDlB = 405s 

A9) The decider has the same nominal behavior (it pro- 
vides a common output result) when evaluating either two 
(majority) or three similar results; accordingly: 

qDiA 9 

denoted qDiB, 

and qD2B qD4B. 

P D l A  Z5 P D ~ A I  qD1B 9028, and thus qDlC qD2C9 
PD4A PD5A 9 qD4B = 405s 9 and thus qD4C 4D5C. 
2) Simplified NVP Model: The corresponding model 

(M4) can be directly derived from the analysis of the NVP 
production process [Fig. 6(a)] and is shown on Fig. 8. 

States D1, 02, and 0 3  are equivalent to related states of 
M 3 .  State D4/5’ corresponds to the activation of related faults 
either 1) among the versions (merging of states 0 4  and D5 
from M 3  [ q R V  = 3 q 2 ~  + q 3 ~ ] ) ,  or 2 )  between the three ver- 
sions and the decider [qVD] (Fig. 7). 

In this case, qVD includes all the interactions between the 
faults of the versions and of the decider and thus, the impact 

3This would take place, for example, in the case of a median-based decision 
when the erroneous results are placed on each side of the acceptable result. 

4The decider is too “tight;” this results in a reliability penalty, in the case 
when the similar results correspond to acceptable results. 

’This case does not correspond to the case when the decider is evaluating 
at least two similar erroneous results. The singularities correspond here to 
the cases- hopefully rare!- when the decider outvotes acceptable results or 
when the decider is too “loose.” 
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of the activation of an independent fault in the decider is con- 
sidered only for state D1 with probability qDlB $ - q D l C .  
For states 0 2 ,  0 3 ,  and D4/5’, the description is limited to the 
nominal (fault-free) behavior of the decider. 

3 )  Processing of the Models: 
For model M3, 

For model M4, we have 

r S  = 0 {P’qDlC f qRV f qVD} (16) 

for which the expressions below are close pessimistic approx- 
imations: 

r R  =a{qD fqRV fqVD f3(q1v)’} ( 1 5 ’ )  

rS = a { q D l C  + qRV + qVD}. (16’) 

It is worth noting that the same expressions can be obtained 
from M3, 1 )  when there is no compensation [qD3.4 = qD4.4 = 
01 and 2 )  noting that expression [3q/VqDIC + 3(q/V)’qD3C] 
obtained in ( 13) and ( 14) can be identified to the probability of 
activation of a related fault in the versions and in the decider 
[qVD] from (15) and (16). Indeed, ( 1 3 )  and (14) write as 

r S  a{pqDlC + qRVPD3C + qVD} (14‘) 

for which it can be verified that (15’) and (16’) constitute valid 
approximations. Accordingly, further analyses will be carried 
out considering essentially these approximate expressions. 

4) Comparison to a Nonfault-Tolerant Software: From 
( 1 2 )  the failure rate of the nonfault-tolerant software corre- 
sponding to the selection of any version is expressed as 

rk = aqV a{q3V + 2q2V f qVD f q/V}  

= a{qkV f qVD + q/V}  (17) 

where qkv corresponds to the probability of activation of the 
faults in the selected version that could be mapped to related 
faults in the other two versions in the NVP software. 

The ratio r = rR/rk is then 

( 1 8 )  
40 f qRV f qVD + 3(qIV)’ r =  

qkv + qVD + qIV 

p” = 1 - 3 qIv ~ 3 (qNI2 - qRV - q’VD, P’D = 1 - q’DB - q’DC = 1 - q’D 
p * = l  -2qN-(qV)2-q’RV-q’VD. p * D = l - q * D B - q * D € = I - q * D  

Fig. 9. MS-NVP model with fault treatment. 

For the comparison, we introduce the ratio i identifying the 
proportion of independent faults in the selected version: 

qIV iqV = i<qkv f qVD f q/V)- (19) 
It follows that 

As qRV = q3v + 3 q ~  and qkv = q3v + 2 q 2 ~ ,  we have 
qRV qkv,  when related faults in three versions dominate 
(specification), and qRV N ( 3  /2)qk v ,  when related faults in 
two versions dominate (implementations). Thus, r is com- 
prised into domain determined by the lower ( r ’ )  and upper 
( r”)  bounds: 

r’ = qD/qV + (1 - i) + 3(i)’qV (21) 

r” = qD/qV + ( 3 / 2 ) (  1 - i) + 3(i)’qV. ( 2 2 )  

These expressions enable us to quantify the following quali- 
tative (and intuitive) results: 

the decider must be far more reliable than the versions, 
if related faults dominate (i = 0) no improvement has to 

be expected, which confirms the results obtained in a large 
number of previous studies, e.g., see [17] and [ 2 2 ] .  

B. NVP Model with Fault Treatment 

In this case (since assumption A5 applies), a supplementary 
specification of the decider is to correctly diagnose a disagree- 
ing version when two versions provide acceptable results. 

I )  Description of the Model: The corresponding model 
(M5) is shown on Fig. 9. Submodel SM1 is equivalent to 
model M4, the only differences concern 

the elimination of the states Di with an output transition 
equal to 1 by merging them with the next state, 

the modification of the probabilities of activation of a 
fault in the decider to account for the change in its specifica- 
tion, 1) change of qVD into qbD6 and 2 )  change of 401; into 
qbi (i E { B ,  C } ) ,  

61n particular, qLD includes the risk of failure of the diagnosis of the 
decider: discarding a version providing an acceptable result. 
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Fig. 10. M6-Model for reliability and safety analysis. 

when an independent fault has been activated in a single 
version, this version is discarded and thus SM2 is entered. 

Submodel SM2 has the same structure as SM1; however, as 
only two versions are used, the probabilities of fault activation 
in the versions and in the decider are modified in accordance; 
in particular, ql;lV = q 2 ~ .  

2) Processing of the Model: As in model M5 the non- 
failed states do not constitute an irreducible Markov chain, 
it is not possible to obtain equivalent failure rates. However, 
equivalent failure rates may be derived for each submodel in 
isolation: 

rs2 = U { q &  + qiV + q b } *  (26) 

Reliability and safety of the model can then be analyzed by 
processing model M6 of Fig. 10, where X = R for reliability 
and X = S for safety. 

Reliability and safety and the associated mean times to fail- 
ure express as 

Analysis of these expressions requires that the rates be pre- 
cisely evaluated which is a rather difficult task due to the 
uncertainty in the values of the probabilities from which they 
are derived. Nevertheless, interesting results can be obtained 
with the following assumptions: 

A10) The decider has the same behavior when evaluat- 
ing either three versions (SM1) or two versions (SM2), i.e., 

A l l )  Due to the intrinsic simplicity of the algorithm in- 
volved, the behavior of the decider is not significantly al- 
tered when its specifications are modified from assumption A4 

qb; M 4;; and q L D  q ; D .  

(model M4) to assumption A5 (model M5), i.e., q D l j  qh; 

According to A10, it can be verified from relations (23) to 
and qVD qLD. 

(26), that 

r R 1  = (J{qb + 4 3 V  f 3q2V + qbD + 3(q1V>~} (29) 

rS1 =(J{qbc + q 3 V  +3q2V+qbD) (30) 

r R 2  (J{qb + 4 2 V  + q b D  + 2qIV + (qIV)2} (31) 

rS2 = a{qbC + q2V + q:D). (32) 

These relations show that rsl > rs2 and that 
r R  I < rR2, when independent faults in the versions dom- 

inate, 
r R 1  > rR2, when related faults among the versions dom- 

inate. 
Expressions (28) show that the decision to discard the dis- 

agreeing version improves MTTFs, which is not always the 
case for MTTFR .7 Analogous conclusions can be derived from 
expressions (27) for S(  t) and R (t) . 

More generally, the expressions confirm a general system 
reliability result, i.e., it is better to use two versions than three 
versions, when emphasis is put on safety rather than on reli- 
ability. Furthermore, in the case of reliability, the impact of 
related faults is clearly indicated by the fact that no improve- 
ment has to be expected when using three versions instead of 
two if related faults among the versions dominate significantly 
over independent faults [22]. 

IV. RB AND NVP COMPARISON 

In order to be homogeneous, the comparison is carried out 

assumptions A2 and A7 hold (a single fault type activa- 

no specific fault treatment is considered for NVP. 
For each architecture, specific notations have been used. 

However, similar expressions can be derived for r R  and rs, 
based on the following notation: 

q 1  = Prob{independent failure of one variant lexecution}, 
thus: 41.m = q p  4s and ~ I , N V P  = q1v 

qCM = Prob{common-mode failurelexecution} , thus: qCM,RB 

Accordingly, relations (7) with qT << 1 and (15') become, 

only when 

tion and no error compensation within the whole software), 

- 
- qpST = qpS  f q T  and q C M ,  NVP = qVD + q R V  f 4 0 .  

respectively, 

for RB: r R  = (J{qCM,RB + (qI,RBl2) (33) 

r R  = (J {qCM, NVP f 3(qI, NVP>2 1. for NVP: 

Although the form of these expressions would suggest that 
RB is better than NVP, it has to be noted that the influence of 
the various terms may be different. Indeed, if the probabilities 
of activation of 1) an independent fault in one variant [ q p  
(or q s )  and q ~ v ]  and 2) of related faults between variants [ q p s  

(34) 

'Indeed, l / r R I  (resp., l/rs,) can be interpreted as the MTTFR (resp., 
MTTFs) of the NVP software when no fault treatment is carried out (model 
M4). 
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and q ~ v ] ,  are of the same order of magnitude, however, the 
probabilities of activation of 1) an independent fault in the de- 
cider [qr and qo] and 2) of related faults between the variants 
and the decider [qpST and q V D ]  are likely to be greater for 
RB than for NVP; this is mainly due to the fact that the AT 
is specific to each application, whereas the decider in NVP is 
generic to a large extent. 

It follows that independent failures for the variants have 
more impact for the NVP, whereas the impact of the decider 
is lower for this architecture. However, a precise knowledge 
of these probabilities would be needed in order to perform a 
more detailed comparison. 

Considering safety analysis, we have obtained 

for NVP: rS = u { q R V  f q V D  $- q D l C )  (36) 

Related faults among variants have no influence for RB, but 
are of prime importance for NVP. This is a consequence of the 
fact that for RB an absolute decision is taken for each alternate 
against the specification and that for NVP the decision is made 
on a relative basis among the results provided by the versions. 

Due to the very nature of the NVP decider, qolc may be 
made very low and as q v ~  << q R V ,  q R V  has to be compared 

Finally it is worth noting that only partial conclusions can be 
drawn from this analysis. Additional features need to be taken 
into account, such as the fact that, for RB, service delivery is 
suspended during error recovery, i.e., when the secondary is 
invoked. 

with q p s T .  

V. NESTED RECOVERY BLOCKS 

This section provides a preliminary extension of the analy- 
sis of the RB architecture to account for the specific case of 
nested RB’s. Nested RB’s are very interesting and give rise 
to stimulating discussions, but have received little treatment 
from the modeling point of view. We simply illustrate here, 
how a simple case of nested RB’s can be handled with the 
modeling and evaluation approach presented. Let us consider 
for example that P is itself a RB; P will be called the nested 
block (NB) . 

The production process of a RB [Fig. 2(a)] is still the same, 
but box 4 becomes specification of the NB, and it is decom- 
posed into an equivalent production process as for the original 
RB (Fig. 11). 

It can be seen that related faults due to the specification 
still remain; on the contrary related faults introduced, during 
separate implementations (channels a ,  b ,  c )  are moved to the 
lower level, i.e., between the alternates composing the NB 
and the associated AT, S ,  and the original AT. 

Independent faults in S are not changed either, but indepen- 
dent faults in P are split into related and independent faults in 
the NB. 

It follows that the common-mode failure probability (qCM) 
must be split into specifcation and implementation common- 
mode failure probabilities denoted (qCMS) and (qCMI), respec- 
tively. q C M S  is the same for the original and the nested RB’s, 

b* 
C* 

Fig. 11. Nested RB. 

but the probability of common-mode failure due to implemen- 
tation faults has to be distinguished for the original (qCMI) and 
the nested (q&) RB. 

The new equivalent failure rate is deduced directly from 
(33) as 

ri  = C‘{qCMS + q & f I  f [q&M + (qi)21q1) (37) 

where qkM and qi denote, respectively, the probabilities of 
common-mode and independent failure of the nested block. 

The important question is: how does I?; compare to r R ?  
For this concern, it is worth noting that NB’s correspond to 
1) a step in the decomposition of the complexity of the soft- 
ware and 2) an increase in the redundancy, and as such it can 
be expected that the reliability be improved as shown in [7] 
where the reliability of an RB with two and more alternates 
is evaluated. 

Formula (37) can be easily generalized to the cases of 1) 
successive NB’s, 2) NB’s in both P and S ,  and 3) more than 
one NB in each alternate. 

VI. CONCLUSION 

The paper presented a detailed reliability and safety anal- 
ysis of the two major software fault-tolerance approaches: RB 
and NVP. 

The methodology used for modeling is based on 1) the 
identification of the possible types of faults introduced during 
the specification and the implementation, 2) the analysis of 
the behavior following fault activation. 

An important comment concerns the fault assumption used 
in the modeling. The most significant issue for evaluation of 
diversified software in operation concerns the types of errors 
(distinct or similar) that result from the activation of faults. We 
considered a direct mapping of these errors with two distinct 
fault classes: independent and related faults. Such a mapping 
is pessimistic as it enables us to incorporate only positive 
correlation in the manifestation of related faults. As recently 
evidenced in [6], another form of correlation (negative cor- 
relation) does exist among related faults which has a benefi- 
cial consequence on the execution of multivariant software in 
forcing the delivery of distinct errors. However, although they 
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could be traced to (negatively correlated) related faults, faults 
leading to distinct errors are not distinguishable at the execu- 
tion level from independent faults and thus they both can be 
merged into a single category: the independent faults. A dual 
discussion applies also to similar errors since in some-very 
rare (e.g., see [3])-cases they also could be traced to in- 
dependent faults. It is worth noting that the detailed analysis 
of the relationship between classes of errors and faults would 
result in a further increase in the-already large-number of 
parameters of the models. In addition, owing to the promi- 
nent influence of the deciders in the failure process of a fault- 
tolerant software, such an analysis should not be limited to 
examining the intervariant correlations, but should cover the 
positive and negative correlations between the variants and the 
deciders, as well. 

The main outcome of the evaluation carried out concerns 
the derivation of analytical results enabling us 1) to identify 
the conditions of improvement, when compared to a nonfault- 
tolerant software, that could result from the use of RB (the 
acceptance test has to be more reliable than the alternates) and 
NVP (related faults among the versions and the decider have 
to be minimized) and 2 )  to reveal the most critical types of 
related faults. In particular, for safety, the related faults be- 
tween the variants have a significant impact for NVP, whereas 
only related faults between the alternates and the acceptance 
test have to be considered for R B .  

The study of the nested RB’s showed that 1) the proposed 
analysis approach can be applied to such realistic software 
structures and 2) when an alternate is itself an RB, the results 
are analogous to the case of the addition of a third alternate. 
The reliability analysis showed that an improvement has to be 
expected, but that this improvement would be very low. 

The specific study of the discarding of a failed version 
in NVP showed that this strategy is always worthwhile for 
safety, whereas, for reliability, it is all the more beneficial as 
independent faults dominate. 
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